Omer Angel, Yuval Peres, Fan Wei, and myself have just posted to the arXiv our paper showing that local max-cut is in smoothed polynomial time. In this post I briefly explain what is the problem, and I give a short proof of the previous state of the art result on this problem, which was a paper by Etscheid and Roglin showing that local max-cut is in quasi-polynomial time.
Local max-cut and smoothed analysis
Let be a connected graph with
vertices and
be an edge weight function. The local max-cut problem asks to find a partition of the vertices
whose total cut weight
is locally maximal, in the sense that one cannot increase the cut weight by changing the value of at a single vertex (recall that actually finding the global maximum is NP-hard). See the papers linked to above for motivation on this problem.
There is a simple local search algorithm for this problem, sometimes referred to as “FLIP”: start from some initial and iteratively flip vertices (i.e. change the sign of
at a vertex) to improve the cut weight until reaching a local maximum. It is easy to build instances
where FLIP takes exponential time, however in “practice” it seems that FLIP always converges quickly. This motivates the smoothed analysis of FLIP, that is we want to understand what is the typical number of steps for FLIP when the edge weights is perturbed by a small amount of noise. Formally we now assume that the weight on edge
is given by a random variable
which has a density with respect to the Lebesgue measure bounded from above by
(for example this forbids
to be too close to a point mass). We assume that these random variables are independent.
Theorem(Etscheid and Roglin [2014]): With probability
FLIP terminates in
steps for some universal constant
.
We improve this result from quasi-polynomial to polynomial, assuming that we put some noise on the interaction between every pair of vertices, or in other words assuming that the graph is complete.
Theorem(Angel, Bubeck, Peres, Wei [2016]): Let
be complete. With probability
FLIP terminates in
steps.
I will now prove the Etscheid and Roglin result.
Proof strategy
To simplify notation let us introduce the Hamiltonian
We want to find a local max of . For any
and
, we denote by
the state equal to
except for the coordinate corresponding to
which is flipped. For such
there exists a vector
such that
More specifically is defined by
We say that flipping a vertex is a move, and it is an improving move if the value of strictly improves. We say that a sequence of moves
is
-slow from
if
It is sufficient to show that with high probability there is no -slow sequence with say
and
(indeed in this case after
steps FLIP must have stopped, for otherwise the
value would exceed the maximal possible value of
). We will do this in in three main steps, a probability step, a linear algebra step, and a combinatorial step.
Probability step
Lemma: Let
be
linearly independent vectors in
. Then one has
Proof: The inequality follows from a simple change of variables. Let be a full rank matrix whose first
rows are
and it is completed so that
is the identity on the subspace orthogonal to
. Let
be the density of
, and
the density of
. One has
and the key observation is that since
has integer coefficients, its determinant must be an integer too, and since it is non-zero one has
Thus one gets:
Linear algebra step
Lemma: Consider a sequence of
improving moves with
distinct vertices (say
) that repeat at least twice in this sequence. Let
be the corresponding move coefficients, and for each
let
(respectively
) be the first (respectively second) time at which
moves. Then the vectors
,
, are linearly independent. Furthermore for any
that did not move between the times
and
one has
(and for any
).
Proof: The last sentence of the lemma is obvious. For the linear independence let be such that
. Consider a new graph
with vertex set
and such that
is connected to
if
appears an odd number of times between the times
and
. This defines an oriented graph, however if
is connected to
but
is not connected to
then one has
while
(and furthermore for any
) and thus
. In other words we can consider a subset of
where
is an undirected graph, and outside of this subset
is identically zero. To reduce notation we simply assume that
is undirected. Next we observe that if
and
are connected then one must have
(this uses the fact that we look at the {\em first} consecutive times at which the vertices move) and in particular (again using that for any
) one must have
. Now let
be some connected component of
, and let
be the unique value of
on
. Noting that the
‘s corresponding to different components of
have difference support (more precisely with
one has for any
and for any
) one obtains
. On the other hand since the sequence of moves is improving one must have
, which implies
and finally
(thus concluding the proof of the linear independence).
Combinatorial step
Lemma: Let
. There exists
and
such that the number of vertices that repeat at least twice in the segment
is at least
.
Proof (from ABPW): Define the surplus of a sequence to be the difference between the number of elements and the number of distinct elements in the sequence. Let be the maximum surplus in any segment of length
in
. Observe that
. Let us now assume that for any segment of length
, the number of vertices that repeat at least twice is at most
. Then one has by induction
This shows that has to be greater than
which concludes the proof.
Putting things together
We want to show that with one has
By the combinatorial lemma we know that it is enough to show that:
Now using the probability lemma together with the linear algebra lemma (and observing that critically only depends on the value of
at the vertices in
, and thus the union bound over
only gives a
factor instead of
) one obtains that the above probability is bounded by
which concludes the proof of the Etscheid and Roglin result.
Note that a natural route to get a polynomial-time bound from the above proof would be to remove the term in the combinatorial lemma but we show in our paper that this is impossible. Our result comes essentially from improvements to the linear algebra step (this is more difficult as the Etscheid and Roglin linear algebra lemma is particularly friendly for the union bound step, so we had to find another way to do the union bound).
By Gil Kalai October 24, 2016 - 12:16 pm
Impressive, congratulations!
By Sebastien Bubeck October 24, 2016 - 5:00 pm
Thanks Gil! I think there are lots of cool (and difficult) open problems following this work. The one I prefer is to show that in fact local max cut is in smoothed quasi-linear time.