Tag Archives: ecology and evolutionary biology

Genetic tweak gave yellow fever mosquitoes a nose for human odor (Nature)

-By Morgan Kelly, Office of Communications

2014_11_12_Mosquito1One of the world’s deadliest mosquitoes sustains its taste for human blood thanks in part to a genetic tweak that makes it more sensitive to human odor, according to new research.

Researchers report in the journal Nature that the yellow fever mosquito contains a version of an odor-detecting gene in its antennae that is highly attuned to sulcatone, a compound prevalent in human odor. The researchers found that the gene, AaegOr4, is more abundant and more sensitive in the human-preferring “domestic” form of the yellow fever mosquito than in its ancestral “forest” form that prefers the blood of non-human animals.

The research provides a rare glimpse at the genetic changes that cause behaviors to evolve, explained first author Carolyn “Lindy” McBride, an assistant professor in Princeton University’s Department of Ecology and Evolutionary Biology and the Princeton Neuroscience Institute who conducted the work as a postdoctoral researcher at the Rockefeller University. Uncovering the genetic basis of changes in behavior can help us understand the neural pathways that carry out that behavior, McBride said.

The research also could help in developing better ways to stem the yellow fever mosquito’s appetite for humans, McBride said. The yellow fever mosquito is found in tropical and subtropical areas worldwide and is the principal carrier of yellow fever, the measles-like dengue fever, and the painful infection known as chikungunya. Yellow fever annually kills tens of thousands of people worldwide, primarily in Africa, while dengue fever infects hundreds of millions. The research also suggests a possible genetic root for human preference in other mosquitoes, such as malaria mosquitoes, although that species is genetically very different from the yellow fever mosquito.

“The more we know about the genes and compounds that help mosquitoes target us, the better chance we have of manipulating their response to our odor” McBride said, adding that scent is not the only driver of mosquito behavior, but it is a predominant factor.

The researchers first conducted a three-part series of experiments to establish the domestic yellow fever mosquito’s preference for human scent. Forest and domestic mosquitoes were put into a large cage and allowed to bite either a guinea pig or a researcher’s arm. Then the mosquitoes were allowed to choose between streams of air that had passed over a guinea pig or human arm. Finally, to rule out general mosquito attractants such as exhaled carbon dioxide, mosquitoes were allowed to choose between the scent of nylon sleeves that had been in contact with a human or a guinea pig.

In all three cases, the domestic form of the yellow fever mosquito showed a strong preference for human scent, while the forest form primarily chose the guinea pig. Although domestic mosquitoes would sometimes go for the guinea pig, it happened very rarely, McBride said.

McBride and colleagues then decided to look for differences in the mosquitoes’ antennae, which are equivalent to a human’s nose. They interbred domestic and forest mosquitoes, then interbred their offspring to create a second hybrid generation. The genomes of these second-generation hybrids were so completely reshuffled that when the researchers compared the antennae of the human- and guinea pig-preferring individuals they expected to see only genetic differences linked directly to behavior, McBride said.

The researchers found 14 genes that differed between human- and guinea pig-preferring hybrids — two of them were the odorant receptors Or4 and Or103. Choosing to follow up on Or4, the researchers implanted the gene into fruit-fly neurons. They found that the neurons exhibited a burst of activity when exposed to sulcatone, but no change when exposed to guinea pig odors. McBride plans to further study Or103 and other genes that could be linked to host preference at Princeton.

Gene expression

A comparison of domestic and forest form antennae found that two odorant-receptor genes, Or4 and Or103, are more “expressed,” or abundant, in the human-preferring domestic mosquitoes (top bar) than in the forest form that feeds primarily on non-human animals (bottom bar). The color scale indicates the level of gene expression with purple standing for the least amount and red for the most. The numbers to the left of the colored bars represent three different colonies of each mosquito form. The slanted line under each gene’s name points to the level of expression of that gene in each colony. (Image courtesy of Carolyn McBride, Department of Ecology and Evolutionary Biology and the Princeton Neuroscience Institute)

This work provides insight into how the domestic form of the yellow fever mosquito evolved from its animal-loving ancestor into a human-biting specialist, McBride said. “At least one of the things that happened is a retuning of the ways odors are detected by the antennae,” she said. “We don’t yet know whether there are also differences in how odor information is interpreted by the brain.”

This work was supported in part by the National Institutes of Health (NIDCD grant no. DC012069; NIAID grant no. HHSN272200900039C; and NCATS CTSA award no. 5UL1TR000043); the Swedish Research Council and the Swedish University of Agricultural Science’s Insect Chemical Ecology, Ethology and Evolution initiative; and the Howard Hughes Medical Institute.

Read the abstract.

Carolyn S. McBride, Felix Baier, Aman B. Omondi, Sarabeth A. Spitzer, Joel Lutomiah, Rosemary Sang, Rickard Ignell, and Leslie B. Vosshall. 2014. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. Arti­cle pub­lished in print Nov. 13, 2014. DOI: nature13964.3d

Model anticipates ecological impacts of human responses to climate (Conservation Biology)

A Princeton University research team has created a readily transferable method for conservation planners trying to anticipate how agriculture will be affected by such adaptations. The tested their model by studying wheat and maize production in South Africa. (Image source: WWS)

A Princeton University research team has created a readily transferable method for conservation planners trying to anticipate how agriculture will be affected by such adaptations. The tested their model by studying wheat and maize production in South Africa. (Image source: WWS)

By B. Rose Huber, Woodrow Wilson School of Public and International Affairs

Throughout history, humans have responded to climate.

Take, for example, the Mayans, who, throughout the eighth and 10th centuries, were forced to move away from their major ceremonial centers after a series of multi-year droughts, bringing about agricultural expansion in Mesoamerica, and a clearing of forests. Much later, in the late 20th century, frequent droughts caused the people of Burkina Faso in West Africa to migrate from the dry north to the wetter south where they have transformed forests to croplands and cut the nation’s area of natural vegetation in half.

Such land transformations, while necessary to ensure future crop productivity, can themselves have large ecological impacts, but few studies have examined their effects. To that end, a Princeton University research team has created a model to evaluate how a human response to climate change may alter the agricultural utility of land. The study, featured in Conservation Biology, provides a readily transferable method for conservation planners trying to anticipate how agriculture will be affected by such adaptations.

“Humans can transform an ecosystem much more rapidly and completely than it can be altered by shifting temperature and precipitation patterns,” said Lyndon Estes, lead author and associate research scholar in the Woodrow Wilson School of International and Public Affairs. “This model provides an initial approach for understanding how agricultural land-use might shift under climate change, and therefore which currently natural areas might be converted to farming.”

Under the direction of faculty members Michael Oppenheimer and David Wilcove, both from the Wilson School’s Program in Science, Technology and Policy, and with the help of visiting student research collaborator Lydie-Line Paroz from ETH Zurich and colleagues from several other institutions, Estes studied South Africa, an area projected to be vulnerable to climate change where wheat and maize are the dominant crops.

Before determining how climate change could impact the crops, the team first needed to determine which areas have been or might be farmed for maize and wheat. They created a land-use model based on an area’s potential crop output and simulated how much of each crop was grown from 1979 to 1999 – the two decades for which historical weather data was available. They also calculated the ruggedness of each area of land, which is related to the cost of farming it. Taking all factors into account, the model provides an estimate of whether the land is likely to be profitable or unprofitable for farming.

To investigate any climate-change impacts, the team then examined the production of wheat and maize under 36 different climate-response scenarios. Many possible future climates were taken into account as well as how the crops might respond to rising levels of carbon dioxide. Based on their land-use model, the researchers calculated how the climate-induced productivity changes alter a land’s agricultural utility. In their analysis, they included only conservation lands – current nature reserves and those that South African conservation officials plan to acquire – that contained land suitable for growing one of the two crops either currently or in the future. However, Estes said the model could be adapted to assess whether land under other types of uses (besides conservation) are likely to be profitable or unprofitable for future farming.

They found that most conservation lands currently have low agricultural utility because of their rugged terrain, which makes them difficult to farm, and that they are likely to stay that way under future climate-change scenarios. The researchers did pinpoint several areas that could become more valuable for farming in the future, putting them at greater risk of conversion. However, some areas were predicted to decrease value for farming, which could make them easier to protect and conserve.

“While studying the direct response of species to climatic shifts is important, it’s only one piece of a complicated puzzle. A big part of that puzzle relates to how humans will react, and history suggests you don’t need much to trigger a change in the way land is used that has a fairly long-lasting impact. ” said Estes. “We hope that conservation planners can use this approach to start thinking about human climate change adaptation and how it will affect areas needing protection.”

Other researchers involved in the study include: Lydie-Line Paroz, Swiss Federal Institute of Technology; Bethany A. Bradley, University of Massachusetts; Jonathan Green, STEP; David G. Hole, Conservation International; Stephen Holness, Centre for African Conservation Ecology; and Guy Ziv, University of Leeds.

The work was funded by the Princeton Environmental Institute‘s Grand Challenges Program.

Read the abstract.

Estes LD, Paroz LL, Bradley BA, Green JM, Hole DG, Holness S, Ziv G, Oppenheimer MG, Wilcove DS. Using Changes in Agricultural Utility to Quantify Future Climate-Induced Risk to Conservation Conservation Biology (2013). First published online Dec. 26, 2013.