A valley so low: Electrons congregate in ways that may be useful to “valleytronics”

Yellow swirling ellipses against a blue background

A Princeton University-led study has revealed an emergent electronic behavior on the surface of bismuth crystals that could lead to insights on the growing area of technology known as “valleytronics.”

The term refers to energy valleys that form in crystals and that can trap single electrons. These valleys potentially could be used to store information, greatly enhancing what is capable with modern electronic devices.

In the new study, researchers observed that electrons in bismuth prefer to crowd into one valley rather than distributing equally into the six available valleys. This behavior creates a type of electricity called ferroelectricity, which involves the separation of positive and negative charges onto opposite sides of a material. The study was published in the journal Nature Physics.

The finding confirms a recent prediction that ferroelectricity arises naturally on the surface of bismuth when electrons collect in a single valley. These valleys are not literal pits in the crystal but rather are like pockets of low energy where electrons prefer to rest.

The researchers detected the electrons congregating in the valley using a technique called scanning tunneling microscopy, which involves moving an extremely fine needle back and forth across the surface of the crystal. They did this at temperatures hovering close to absolute zero and under a very strong magnetic field, up to 300,000 times greater than Earth’s magnetic field.

The behavior of these electrons is one that could be exploited in future technologies. Crystals consist of highly ordered, repeating units of atoms, and with this order comes precise electronic behaviors. Silicon’s electronic behaviors have driven modern advances in technology, but to extend our capabilities, researchers are exploring new materials. Valleytronics attempts to manipulate electrons to occupy certain energy pockets over others.

The existence of six valleys in bismuth raises the possibility of distributing information in six different states, where the presence or absence of an electron can be used to represent information.  The finding that electrons prefer to cluster in a single valley is an example of “emergent behavior” in that the electrons act together to allow new behaviors to emerge that wouldn’t otherwise occur, according to Mallika Randeria, the first author on the study and a graduate student at Princeton working in the laboratory of Ali Yazdani, the Class of 1909 Professor of Physics.

“The idea that you can have behavior that emerges because of interactions between electrons is something that is very fundamental in physics,” Randeria said. Other examples of interaction-driven emergent behavior include superconductivity and magnetism.

In addition to Randeria, the study included equal contributions from Benjamin Feldman, a former postdoctoral fellow at Princeton who is now an assistant professor of physics at Stanford University, and Fengcheng Wu, a postdoctoral researcher at Argonne National Laboratory. Additional contributors at Princeton were Hao Ding, a postdoctoral research associate in physics, and András Gyenis, a postdoctoral research associate in electrical engineering; Ji Huiwen, who earned a doctoral degree at Princeton and is now a postdoctoral researcher at the University of California-Berkeley; Robert Cava, Princeton’s Russell Wellman Moore Professor of Chemistry; and Yazdani. Additional contributions came from Allan MacDonald, professor of physics at the University of Texas-Austin.

The study was funded by the Gordon and Betty Moore Foundation as part of the EPiQS initiative (GBMF4530), the U.S. Department of Energy (DOE-BES grant DE-FG02-07ER46419), the U.S. Army Research Office MURI program (W911NF-12-1-046), the National Science Foundation’s MRSEC program through the Princeton Center for Complex Materials (NSF-DMR-142054 and NSF-DMR-1608848), and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton. Work at University of Texas-Austin was supported by DOE grant (DE-FG03-02ER45958) and by the Welch Foundation (TBF1473).

The study “Ferroelectric quantum Hall phase revealed by visualizing Landau level wave function interference,” by Mallika T. Randeria, Benjamin E. Feldman, Fengcheng Wu, Hao Ding, András Gyenis, Huiwen Ji, R. J. Cava, Allan H. MacDonald, and Ali Yazdani, was published online May 14, 2018, and in print in August, 2018, in the journal Nature Physics.

By Catherine Zandonella

Novel insulators with conducting edges

Current flowing on the edges

Article courtesy of the University of Zurich

An international team including scientists at Princeton University is researching a new class of materials: higher-order topological insulators. The edges of these crystalline solids conduct electric current without dissipation, while the rest of the crystal remains insulating. These materials could be useful for applications in semiconductor technology and for building quantum computers. The study was published in the journal Sciences Advances.

Topology examines the properties of objects and solids that are protected against perturbations and deformations. Topological materials known so far include topological insulators, which are crystals that insulate on the inside but conduct electrical current on their surface. The conducting surfaces are topologically protected, which means that they cannot easily be brought into an insulating state.

A new class of materials: Higher-order topological insulators

Theoretical physicists have now predicted a new class of topological insulators that have conducting properties on the edges of crystals rather than on the surface. The research team, made up of scientists from University of Zurich (UZH), Princeton University, the Donostia International Physics Center, and the Max Planck Institute of Microstructure Physics in Halle, dubbed the new material class “higher-order topological insulators.” The extraordinary robustness of the conducting edges makes them particularly interesting: The current of topological electrons cannot be stopped by disorder or impurities. If an imperfection gets in the way of the current, it simply flows around the impurity.

Like a highway for electrons

In addition, the crystal edges do not have to be specially prepared to conduct electrical current. If the crystal breaks, the new edges also conduct current. “The most exciting aspect is that electricity can at least in theory be conducted without any dissipation,” said Titus Neupert, professor in the Department of Physics at UZH. “You could think of the crystal edges as a kind of highway for electrons. They can’t simply make a U-turn.” Neupert and his team collaborated with B. Andrei Bernevig, professor of physics, and his team at Princeton University.

This property of dissipationless conductance, more commonly associated with superconductors at low temperatures, is not shared with the previously known topological insulator crystals that have conducting surfaces, but is specific to the higher-order topological crystals.

Further theoretical and experimental research needed

The physicists’ study still mostly relies on theoretical aspects. They have proposed tin telluride as the first compound to show these novel properties. “More material candidates have to be identified and probed in experiments,” says Neupert. The researchers hope that in the future, nanowires made of higher-order topological insulators may be used as conducting paths in electric circuits. These nanowires could be combined with magnetic and superconducting materials for use in building quantum computers.

Funding was provided by the U.S. Department of Energy (DE-SC0016239), a Simons Investigator Award, the David and Lucile Packard Foundation, and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton University. The computational part of the Princeton work was performed with funding from the National Science Foundation’s Early-Concept Grants for Exploratory Research (DMR-1643312) and Materials Research Science and Engineering Centers (DMR-1420541), the Office of Naval Research (ONR-N00014-14-1-0330), and the Army Research Office (MURI W911NF-12-1-0461). Support was also provided by the Swiss National Science Foundation (grant number: 200021_169061), the European Union’s Horizon 2020 research and innovation program (ERC-StG-Neupert-757867-PARATOP), and the Spanish Ministry of Economy and Competitiveness (FIS2016-75862-P).

The study, “Higher-order topological insulators,” by Frank Schindler, Ashley M. Cook, Maia G. Vergniory, Zhijun Wang, Stuart S. P. Parkin, B. Andrei Bernevig, Titus Neupert was published online in Science Advances, on June 1st, 2018. DOI: 10.1126/sciadv.aat0346.

Spotting the spin of the Majorana fermion under the microscope

Majorana detection
The figure shows a schematic of the experiment. A magnetized scanning tunneling microscope tip was used to probe the spin property of the quantum wave function of the Majorana fermion at the end of a chain of iron atoms on the surface of a superconductor made of lead. Image courtesy of Yazdani Lab, Princeton University.

By Catherine Zandonella, Office of the Dean for Research

Researchers at Princeton University have detected a unique quantum property of an elusive particle notable for behaving simultaneously like matter and antimatter. The particle, known as the Majorana fermion, is prized by researchers for its potential to open the doors to new quantum computing possibilities.

In the study published this week in the journal Science, the research team described how they enhanced an existing imaging technique, called scanning tunneling microscopy, to capture signals from the Majorana particle at both ends of an atomically thin iron wire stretched on the surface of a crystal of lead. Their method involved detecting a distinctive quantum property known as spin, which has been proposed for transmitting quantum information in circuits that contain the Majorana particle.

“The spin property of Majoranas distinguishes them from other types of quasi-particles that emerge in materials,” said Ali Yazdani, Princeton’s Class of 1909 Professor of Physics.  “The experimental detection of this property provides a unique signature of this exotic particle.”

The finding builds on the team’s 2014 discovery, also published in Science, of the Majorana fermion in a single atom-wide chain of iron atoms atop a lead substrate. In that study, the scanning tunneling microscope was used to visualize Majoranas for the first time, but provided no other measurements of their properties.

“Our aim has been to probe some of the specific quantum properties of Majoranas. Such experiments provide not only further confirmation of their existence in our chains, but open up possible ways of using them.” Yazdani said.

First theorized in the late 1930s by the Italian physicist Ettore Majorana, the particle is fascinating because it acts as its own antiparticle. In the last few years, scientists have realized that they can engineer one-dimensional wires, such as the chains of atoms on the superconducting surface in the current study, to make Majorana fermions emerge in solids.  In these wires, Majoranas occur as pairs at either end of the chains, provided the chains are long enough for the Majoranas to stay far enough apart that they do not annihilate each other. In a quantum computing system, information could be simultaneously stored at both ends of the wire, providing a robustness against outside disruptions to the inherently fragile quantum states.

Previous experimental efforts to detect Majoranas have used the fact that it is both a particle and an antiparticle. The telltale signature is called a zero-bias peak in a quantum tunneling measurement. But studies have shown that such signals could also occur due to a pair of ordinary quasiparticles that can emerge in superconductors. Professor of Physics Andrei Bernevig and his team, who with Yazdani’s group proposed the atomic chain platform, developed the theory that showed that spin-polarized measurements made using a scanning tunneling microscope can distinguish between the presence of a pair of ordinary quasi-particles and a Majorana.

Typically, scanning tunneling microscopy (STM) involves dragging a fine-tipped electrode over a structure, in this case the chain of iron atoms, and detecting its electronic properties, from which an image can be constructed.  To perform spin-sensitive measurements, the researchers create electrodes that are magnetized in different orientations. These “spin-polarized” STM measurements revealed signatures that agree with the theoretical calculations by Bernevig and his team.

“It turns out that, unlike in the case of a conventional quasi-particle, the spin of the Majorana cannot be screened out by the background. In this sense it is a litmus test for the presence of the Majorana state,” Bernevig said.

The quantum spin property of Majorana may also make them more useful for applications in quantum information. For example, wires with Majoranas at either end can be used to transfer information between far away quantum bits that rely on the spin of electrons. Entanglement of the spins of electrons and Majoranas may be the next step in harnessing their properties for quantum information transfer.

The STM studies were conducted by three co-first authors in the Yazdani group: scientist Sangjun Jeon, graduate student Yonglong Xie, and former postdoctoral research associate Jian Li (now a professor at Westlake University in Hangzhou, China).  The research also included contributions from postdoctoral research associate Zhijun Wang in Bernevig’s group.

This work has been supported by the Gordon and Betty Moore Foundation as part of the EPiQS initiative (grant GBMF4530), U.S. Office of Naval Research (grants ONR-N00014-14-1-0330, ONR-N00014-11-1-0635, and ONR- N00014-13-1-0661) , the National Science Foundation through the NSF-MRSEC program (grants DMR-142054 and DMR-1608848) and an EAGER Award (grant NOA -AWD1004957), the U.S. Army Research Office MURI program (grant W911NF-12-1-046), the U.S. Department of Energy Office of Basic Energy Sciences, the Simons Foundation, the David and Lucile Packard Foundation, and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton.

The study, “Distinguishing a Majorana zero mode using spin resolved measurements,” was published in the journal Science on Thursday, October 12, 2017.

Mysterious force harnessed in a silicon chip

By Catherine Zandonella for the Office of the Dean for Research

Getting something from nothing sounds like a good deal, so for years scientists have been trying to exploit the tiny amount of energy found in nearly empty space. It’s a source of energy so obscure it was once derided as a source of “perpetual motion.” Now, a research team including Princeton scientists has found a way to harness this energy using a silicon-chip device, potentially enabling applications.

This energy, predicted seven decades ago by the Dutch scientist Hendrik Casimir, arises from quantum effects and can be seen experimentally by placing two opposing plates very close to each other in a vacuum. At close range, the plates attract each other. Until recently, however, harnessing this “Casimir force” to do anything useful seemed impossible.

A new silicon chip built by researchers at Hong Kong University of Science and Technology and Princeton University is a step toward harnessing the Casimir force. Using a clever assembly of micron-sized shapes etched into the plates, the researchers demonstrated that the plates can instead repel each other as they are brought close together. Constructing this device entirely out of a single silicon chip could open the way to using the Casimir force for practical applications such as keeping tiny machine parts from sticking to each other. The work was published in the February issue of the journal Nature Photonics.

Energy of a vacuum

Image of a Casimir-on-a-chip device
Researchers created a silicon device that enabled them to observe the Casimir force. (Image credit: Nature Photonics)

“This is among the first experimental verifications of the Casimir effect on a silicon chip,” said Alejandro Rodriguez, an assistant professor of electrical engineering at Princeton University, who provided theoretical calculations for the device, which was built by a team led by Ho Bun Chan at Hong Kong University of Science and Technology. “And it also allows you to make measurements of forces in very nontrivial structures like these that cause repulsion. It is a double-whammy.”

The silicon structure looks like two plates lined with teeth that face each other across a tiny gap which is only about 100 nanometers wide. (A human hair is 60,000-80,000 nanometers wide.) As the two plates are pushed closer together, the Casimir force comes into play and pushes them apart.

This repulsive effect happens without any input of energy and to all appearances, in a vacuum. These characteristics led this energy to be called “zero-point energy.” They also fueled earlier claims that the Casimir force could not exist because its existence would imply some sort of perpetual motion, which would be impossible according to the laws of physics.

The force, which has since been experimentally confirmed to exist, arises from the normal quantum fluctuations of the few atoms that persist in the chasm despite the evacuation of all the air.

The team demonstrated that it is possible to build a device in silicon to control the Casimir force.

“Our paper shows that it is possible to control the Casimir force using structures of complex, tailor-made shapes,” said Ho Bun Chan, senior author on the paper and a scientist at the Hong Kong University of Science and Technology. His team drew on earlier work by Rodriguez published in 2008 that proposed shapes that would be expected to yield a Casimir force that could both attract and repel. “This paper is the experimental realization using a structure inspired by Rodriguez’s design,” Chan said.

Rodriguez and his team at Princeton developed techniques that allowed the researchers to compute interactions between two parallel plates as they approach each other. With these tools, they were then able to explore what would happen if more complex geometries were used. This led to some of the first predictions of a repulsive Casimir force in 2008.

The Rodriguez group used nanophotonic techniques, which involved measuring how light would interact with the structures, to get at the complex equations of how the force arises from the interaction of two plates.

The silicon device included a small mechanical spring that the researchers used to measure the force between the two plates, and to verify that the quantum force can be repulsive. The roughly T-shaped silicon teeth are what allow the repulsive force to form. The repulsion comes from how different parts of the surface interact with the opposite surface.

“We tried to think about what kind of shapes Chan’s group would have to fabricate to lead to a significant repulsive force, so we did some background studies and calculations to make sure they would see enough non-monotonicity as to be measurable,” Rodriguez said.

Going forward, the researchers plan to explore other configurations that may give rise to even larger repulsive forces and more well-defined repulsion at larger separations.

Funding for the study came from the Research Grants Council of Hong Kong and the National Science Foundation (grant no. DMR-1454836).

The paper, “Measurement of non-monotonic Casimir forces between silicon nanostructures,” by L. Tang, M. Wang, C. Y. Ng, M. Nikolic, C. T. Chan, A. W. Rodriguez and H. B. Chan was published in the journal Nature Photonics online Jan. 9, 2017 and in the February 2017 issue. Nature Photonics 97–101(2017) doi:10.1038/nphoton.2016.254.

Artificial topological matter opens new research directions

By Catherine Zandonella, Office of the Dean for Research

An international team of researchers have created a new structure that allows the tuning of topological properties in such a way as to turn on or off these unique behaviors. The structure could open up possibilities for new explorations into the properties of topological states of matter.

“This is an exciting new direction in topological matter research,” said M. Zahid Hasan, professor of physics at Princeton University and an investigator at Lawrence Berkeley National Laboratory in California who led the study, which was published March 24th in the journal Science Advances. “We are engineering new topological states that do not occur naturally, opening up numerous exotic possibilities for controlling the behaviors of these materials.”

The new structure consists of alternating layers of topological and normal, or trivial, insulators, an architecture that allows the researchers to turn on or off the flow of current through the structure. The ability to control the current suggests possibilities for circuits based on topological behaviors, but perhaps more importantly presents a new artificial crystal lattice structure for studying quantum behaviors.

Theories behind the topological properties of matter were the subject of the 2016 Nobel Prize in physics awarded to Princeton University’s F. Duncan Haldane and two other scientists. One class of matter is topological insulators, which are insulators on the inside but allow current to flow without resistance on the surfaces.

In the new structure, interfaces between the layers create a one-dimensional lattice in which topological states can exist. The one-dimensional nature of the lattice can be thought of as if one were to cut into the material and remove a very thin slice, and then look at the thin edge of the slice. This one-dimensional lattice resembles a chain of artificial atoms. This behavior is emergent because it arises only when many layers are stacked together.

Artificial topological matter
The researchers made different samples where they could control how the electrons tunnel from interface to interface through alternating layers of trivial and topological insulators, forming an emergent, tunable one-dimensional quantum lattice. The top panel (A, B, C, and D) shows a structure where the trivial layer is relatively thin, enabling electron-like particles to tunnel through the layers (topological phase). The bottom panel (G, H, I, and J) shows a structure where the trivial insulator is relatively thick and blocks tunneling (trivial phase). (Image courtesy of Science/AAAS)

By changing the composition of the layers, the researchers can control the hopping of electron-like particles, called Dirac fermions, through the material. For example, by making the trivial-insulator layer relatively thick – still only about four nanometers – the Dirac fermions cannot travel through it, making the entire structure effectively a trivial insulator. However, if the trivial-insulator layer is thin – about one nanometer – the Dirac fermions can tunnel from one topological layer to the next.

To fashion the two materials, the Princeton team worked with researchers at Rutgers University led by Seongshik Oh, associate professor of physics, who in collaboration with Hasan and others showed in 2012 that adding indium to a topological insulator, bismuth selenide, caused it to become a trivial insulator. Prior to that, bismuth selenide (Bi2Se3) was theoretically and experimentally identified as a topological insulator by Hasan’s team, a finding which was published in the journal Nature in 2009.

“We had shown that, depending on how much indium you add, the resulting material had this nice tunable property from trivial to topological insulator,” Oh said, referring to the work published in Physical Review Letters in 2012.

Graduate students Ilya Belopolski of Princeton and Nikesh Koirala of Rutgers combined two state-of-the-art techniques with new instrumentation development and worked together on layering these two materials, bismuth selenide and indium bismuth selenide, to design the optimal structure. One of the challenges was getting the lattice structures of the two materials to match up so that the Dirac fermions can hop from one layer to the next. Belopolski and Suyang Xu worked with colleagues at Princeton University, Lawrence Berkeley National Laboratory and multiple institutions to use high resolution angle-resolved photoemission spectroscopy  to optimize the behavior of the Dirac fermions based on a growth to measurement feedback loop.

Photo of research team
Princeton research team from L to R: Guang Bian, M. Zahid Hasan, Nasser Alidoust, Hao Zheng, Daniel Sanchez, Suyang Xu and Ilya Belopolski (Image credit: Princeton University)

Although no topologically similar states exist naturally, the researchers note that analogous behavior can be found in a chain of polyacetylene, which is a known model of one-dimensional topological behavior as described by the 1979 Su-Schrieffer-Heeger’s theoretical model of an organic polymer.

The research presents a foray into making artificial topological materials, Hasan said. “In nature, whatever a material is, topological insulator or not, you are stuck with that,” Hasan said. “Here we are tuning the system in a way that we can decide in which phase it should exist; we can design the topological behavior.”

The ability to control the travel of light-like Dirac fermions could eventually lead future researchers to harness the resistance-less flow of current seen in topological materials. “These types of topologically tunable heterostructures are a step toward applications, making devices where topological effects can be utilized,” Hasan said.

The Hasan group plans to further explore ways to tune the thickness and explore the topological states in connection to the quantum Hall effect, superconductivity, magnetism, and Majorana and Weyl fermion states of matter.

In addition to work done at Princeton and Rutgers, the research featured contributions from the following institutions: South University of Science and Technology of China; Swiss Light Source, Paul Scherrer Institute; National University of Singapore; University of Central Florida; Universität Würzburg; Diamond Light Source, Didcot, U.K.; and Synchrotron SOLEIL, Saint-Aubin, France.

Work at Princeton University and synchrotron-based ARPES measurements led by Princeton researchers were supported by the U.S. Department of Energy under Basic Energy AQ29 Sciences grant no. DE-FG-02-05ER46200 (to M.Z.H.). I.B. was supported by an NSF Graduate Research Fellowship. N.K., M.B., and S.O. were supported by the Emergent Phenomena in Quantum Systems Initiative of the Gordon and Betty Moore Foundation under grant no. GBMF4418 and by the NSF under grant no. NSF-EFMA-1542798. H.L. acknowledges support from the Singapore National Research Foundation under award no. NRF-NRFF2013-03. M.N. was supported by start-up funds from the University of Central Florida. The work acknowledges support of Diamond Light Source, Didcot, U.K., for time on beamline I05 under proposal SI11742-1. Some measurements were carried out at the ADRESS beamline (24) of the Swiss Light Source, Paul Scherrer Institute, Switzerland. This study was in part supported by grant AQ30 no. 11504159 of the National Natural Science Foundation of China (NSFC), grant no. 2016A030313650 of NSFC Guangdong, and project no. JCY20150630145302240 of the Shenzhen Science and Technology Innovations Committee.

The paper, “A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases,” by Ilya Belopolski, Su-Yang Xu, Nikesh Koirala, Chang Liu, Guang Bian, Vladimir Strocov, Guoqing Chang, Madhab Neupane, Nasser Alidoust, Daniel Sanchez, Hao Zheng, Matthew Brahlek, Victor Rogalev, Timur Kim, Nicholas C. Plumb, Chaoyu Chen, François Bertran, Patrick Le Fèvre, Amina Taleb-Ibrahimi, Maria-Carmen Asensio, Ming Shi, Hsin Lin, Moritz Hoesch, Seongshik Oh and M. Zahid Hasan, was published in the journal Science Advances on March 24, 2017. (Belopolski et al., Sci. Adv. 2017;3: e1501692 24 March 2017)

 

A new cosmic survey offers unprecedented view of galaxies

View of the galaxies
A color composite image in the green, red and infrared bands of a patch of the sky known as the COSMOS field, as imaged by the Subaru Telescope in Hawaii. The galaxies are seen at such large distances that the light from them has taken billions of years to reach Earth. The light from the faintest galaxies in this image was emitted when the universe was less than 10 percent of its present age. Click here to pan around the image. (Credit: Princeton University/HSC Project)

By the Office of the Dean for Research

The universe has come into sharper focus with the release this week of new images from one of the largest telescopes in the world. A multinational collaboration led by the National Astronomical Observatory of Japan that includes Princeton University scientists has published a “cosmic census” of a large swath of the night sky containing roughly 100 million stars and galaxies, including some of the most distant objects in the universe. These high-quality images allow an unprecedented view into the nature and evolution of galaxies and dark matter.

The images and accompanying data were collected using a digital optical-imaging camera on the Subaru Telescope, located at the Mauna Kea Observatory in Hawaii. The camera, known as Hyper Suprime-Cam, is mounted directly in the optical path, at the “prime focus,” of the Subaru Telescope. A single image from the camera captures an amount of sky equal to the area of about nine full moons.

The project, known as the Hyper Suprime-Cam Subaru Strategic Program, is led by the National Astronomical Observatory of Japan (NAOJ) in collaboration with the Kavli Institute for the Physics and Mathematics of the Universe in Japan, the Academia Sinica Institute of Astronomy and Astrophysics in Taiwan, and Princeton University.

The release includes data from the first one-and-a-half years of the project, consisting of 61.5 nights of observations beginning in 2014. The project will take 300 nights over five to six years.

The data will allow researchers to look for previously undiscovered galaxies and to search for dark matter, which is matter that neither emits nor absorbs light but which can be detected via its effects on gravity. A 2015 study using Hyper Suprime-Cam surveyed 2.3 square degrees of sky and found gravitational signatures of nine clumps of dark matter, each weighing as much as a galaxy cluster (Miyazaki et al., 2015). The current data release covers about 50 times more sky than was used in that study, showing the potential of these data to reveal the statistical properties of dark matter.

The survey consists of three layers: a Wide survey that will eventually cover an area equal to 7000 full moons, or 1400 square degrees; a Deep survey that will look farther into the universe and encompass 26 square degrees; and an UltraDeep survey that will cover 3.5 square degrees and penetrate deep into space, allowing observations of some of the most distant galaxies in the universe. The surveys use optical and near infrared wavelengths in five broad wavelength bands (green, red, infrared, z, and y) and four narrow-band filters. In the multi-band images, the images are extremely sharp, with star images only 0.6 to 0.8 arcseconds across. (One arcsecond equals 3600th part of a degree.)

Figure 2: Cluster of galaxies
An image of a massive cluster of galaxies in the Virgo constellation showing numerous strong gravitational lenses. The distance to the central galaxy is 5.3 billion light years, while the lensed galaxies, apparent as the arcs around the cluster, are much more distant. This is a composite image in the green, red, and infrared band, and has a spatial resolution of about 0.6 arcsecond. (Credit: NAOJ/HSC Project)

The ability to capture images from deep in space is made possible by the light-collection power of the Subaru Telescope’s mirror, which has an aperture of 8.2 meters, as well as the image exposure time. The depth into space that one can look is measured in terms of the magnitude, or brightness of objects that can be seen from Earth in a given wavelength band. The depths of the three surveys are characterized by magnitudes in the red band of 26.4, 26.6 and 27.3 in the Wide, Deep and Ultradeep data, respectively. As the survey continues, the Deep and Ultradeep surveys will be able to image fainter objects.

The Hyper Suprime-Cam contains 104 scientific charge-coupled devices (CCDs) for a total of 870 million pixels. The total amount of data taken so far comprises 80 terabytes, which is comparable to the size of about 10 million images by a typical digital camera, and covers 108 square degrees. Because it is difficult to search such a huge dataset with standard tools, NAOJ has developed a dedicated database and interface for ease of access and use of the data.

Figure 3: Interation between galaxies
A color composite image in the green, red and infrared bands of UGC 10214, known as the Tadpole Galaxy in the ELAIS-N1 region. The distance to this galaxy is about 400 million light years. The long tail of stars is due to gravitational interaction between two galaxies. (Credit: NAOJ/HSC Project)

“Since 2014, we have been observing the sky with HSC, which can capture a wide-field image with high resolution,” said Satoshi Miyazaki, the leader of the project and a scientist at NAOJ. “We believe the data release will lead to many exciting astronomical results, from exploring the nature of dark matter and dark energy, as well as asteroids in our own solar system and galaxies in the early universe. The team members are now preparing a number of scientific papers based on these data. We plan to publish them in a special issue of the Publication of Astronomical Society of Japan. Moreover, we hope that interested members of the public will also access the data and enjoy the real universe imaged by the Subaru telescope, one of the largest the world.”

At Princeton, the project is co-led by Michael Strauss and Robert Lupton of the Department of Astrophysical Sciences. “The HSC data are really beautiful,” Strauss said. “Princeton scientists are using these data to explore the nature of merging galaxies, to search for the most distant quasars in the universe, to map the outer reaches of the Milky Way Galaxy, and for many other projects. We are delighted to make these wonderful images available to the world-wide astronomical community.”

Funding for the HSC Project was provided in part by the following grants: Grant-in-Aid for Scientific Research (B) JP15340065; Grant-in-Aid for Scientific Research on Priority Areas JP18072003; and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) entitled, “Uncovering the origin and future of the Universe-ultra-wide-field imaging and spectroscopy reveal the nature of dark matter and dark energy.” Funding was also provided by Princeton University.

This article was adapted from a press release from the National Astronomical Observatory of Japan.

Theorists propose new class of topological metals with exotic electronic properties (Physics Review X)

Band structure spectral function
A new theory explains the behavior of a class of metals with exotic electronic properties. Credit: Muechler et al., Physics Review X

By Tien Nguyen, Department of Chemistry

Researchers at Princeton, Yale, and the University of Zurich have proposed a theory-based approach to characterize a class of metals that possess exotic electronic properties that could help scientists find other, similarly-endowed materials.

Published in the journal Physical Review X, the study described a new class of metals based on their symmetry and a mathematical classification known as a topological number, which is predictive of special electronic properties. Topological materials have drawn intense research interest since the early 2000s culminating in last year’s Nobel Prize in Physics awarded to three physicists, including F. Duncan Haldane, Princeton’s Eugene Higgins Professor of Physics, for theoretical discoveries in this area.

“Topological classification is a very general way of looking at the properties of materials,” said Lukas Muechler, a Princeton graduate student in the laboratory of Roberto Car, Princeton’s Ralph W. *31 Dornte Professor in Chemistry and lead author on the article.

A popular way of explaining this abstract mathematical classification involves breakfast items. In topological classification, donuts and coffee cups are equivalent because they both have one hole and can be smoothly deformed into one another. Meanwhile donuts cannot deform into muffins which makes them inequivalent. The number of holes is an example of a topological invariant that is equal for the donut and coffee cup, but distinguishes between the donut and the muffin.

“The idea is that you don’t really care about the details. As long as two materials have the same topological invariants, we can say they are topologically equivalent,” he said.

Muechler and his colleagues’ interest in the topological classification of this new class of metals was sparked by a peculiar discovery in the neighboring laboratory of Robert Cava, Princeton’s Russell Wellman Moore Professor of Chemistry. While searching for superconductivity in a crystal called tungsten telluride (WTe2), the Cava lab instead found that the material could continually increase its resistance in response to ever stronger magnetic fields – a property that might be used to build a sensor of magnetic fields.

The origin of this property was, however, mysterious. “This material has very interesting properties, but there had been no theory around it,” Muechler said.

The researchers first considered the arrangement of the atoms in the WTe2 crystal. Patterns in the arrangement of atoms are known as symmetries, and they fall into two fundamentally different classes – symmorphic and nonsymmorphic – which lead to profound differences in electronic properties, such as the transport of current in an electromagnetic field.

a) Symmorphic symmetry b) Nonsymmorphic symmetry
a) Symmorphic symmetry b) Nonsymmorphic symmetry Credit: Lukas Muechler

While WTe2 is composed of many layers of atoms stacked upon each other, Car’s team found that a single layer of atoms has a particular nonsymmorphic symmetry, where the atomic arrangement is unchanged overall if it is first rotated and then translated by a fraction of the lattice period (see figure).

Having established the symmetry, the researchers mathematically characterized all possible electronic states having this symmetry, and classified those states that can be smoothly deformed into each other as topologically equivalent, just as a donut can be deformed into a cup. From this classification, they found WTe2 belongs to a new class of metals which they coined nonsymmorphic topological metals. These metals are characterized by a different electron number than the nonsymmorphic metals that have previously been studied.

In nonsymmorphic topological metals, the current-carrying electrons behave like relativistic particles, in other words, as particles traveling at nearly the speed of light. This property is not as susceptible to impurities and defects as ordinary metals, making them attractive candidates for electronic devices.

The abstract topological classification also led the researchers to suggest some explanations for some of the outstanding electronic properties of bulk WTe2, most importantly its perfect compensation, meaning that it has an equal number of holes and electrons. Through theoretical simulations, the researchers found that this property could be achieved in the three-dimensional crystalline stacking of the WTe2 monolayers, which was a surprising result, Muechler said.

“Usually in theory research there isn’t much that’s unexpected, but this just popped out,” he said. “This abstract classification directly led us to explaining this property. In this sense, it’s a very elegant way of looking at this compound and now you can actually understand or design new compounds with similar properties.”

Recent photoemission experiments have also shown that the electrons in WTe2 absorb right-handed photons differently than they would left-handed photons. The theory formulated by the researchers showed that these photoemission experiments on WTe2 can be understood based on the topological properties of this new class of metals.

In future studies, the theorists want to test whether these topological properties are also present in atomically-thin layers of these metals, which could be exfoliated from a larger crystal to make electronic devices. “The study of this phenomena has big implications for the electronics industry, but it’s still in its infant years,” Muechler said.

This work was supported by the U.S. Department of Energy (DE-FG02-05ER46201), the Yale Postdoctoral Prize Fellowship, the National Science Foundation (NSF CAREER DMR-095242 and NSF-MRSEC DMR-0819860), the Office of Naval Research (ONR-N00014-11-1- 0635), the U.S. Department of Defense (MURI-130-6082), the David and Lucile Packard Foundation, the W. M. Keck Foundation, and the Eric and Wendy Schmidt Transformative Technology Fund.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics (Phys. Rev. A)

Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)
Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

By John Greenwald, Princeton Plasma Physics Laboratory Communications

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a theory of plasma waves that can infer these properties in greater detail than in standard approaches. The new research analyzes the plasma surrounding the pulsar by coupling Einstein’s theory of relativity with quantum mechanics, which describes the motion of subatomic particles such as the atomic nuclei — or ions — and electrons in plasma. Supporting this work is the DOE Office of Science.

Quantum field theory

Graduate student Yuan Shi Graduate student Yuan Shi (Photo by Elle Starkman/PPPL Office of Communications)
Graduate student Yuan Shi (Photo by Elle Starkman/PPPL Office of Communications)

The key insight comes from quantum field theory, which describes charged particles that are relativistic, meaning that they travel at near the speed of light. “Quantum theory can describe certain details of the propagation of waves in plasma,” said Yuan Shi, a graduate student at Princeton University in the Department of Astrophysics’ Princeton Program in Plasma Physics, and lead author of a paper published July 29 in the journal Physical Review A.  Understanding the interactions behind the propagation can then reveal the composition of the plasma.

Shi developed the paper with assistance from co-authors Nathaniel Fisch, director of the Princeton Program in Plasma Physics and professor and associate chair of astrophysical sciences at Princeton University, and Hong Qin, a physicist at PPPL and executive dean of the School of Nuclear Science and Technology at the University of Science and Technology of China.  “When I worked out the mathematics they showed me how to apply it,” said Shi. 

In pulsars, relativistic particles in the magnetosphere, which is the magnetized atmosphere surrounding the pulsar, absorb light waves, and this absorption displays peaks. “The question is, what do these peaks mean?” asks Shi. Analysis of the peaks with equations from special relativity and quantum field theory, he found, can determine the density and field strength of the magnetosphere.

Combining physics techniques

The process combines the techniques of high-energy physics, condensed matter physics, and plasma physics.  In high-energy physics, researchers use quantum field theory to describe the interaction of a handful of particles. In condensed matter physics, people use quantum mechanics to describe the states of a large collection of particles. Plasma physics uses model equations to explain the collective movement of millions of particles. The new method utilizes aspects of all three techniques to analyze the plasma waves in pulsars.

The same technique can be used to infer the density of the plasma and strength of the magnetic field created by inertial confinement fusion experiments. Such experiments use lasers to ablate — or vaporize —a target that contains plasma fuel. The ablation then causes an implosion that compresses the fuel into plasma and produces fusion reactions.

Standard formulas give inconsistent answers

Researchers want to know the precise density, temperature and field strength of the plasma that this process creates. Standard mathematical formulas give inconsistent answers when lasers of different color are used to measure the plasma parameters. This is because the extreme density of the plasma gives rise to quantum effects, while the high energy density of the magnetic field gives rise to relativistic effects, says Shi. So formulations that draw upon both fields are needed to reconcile the results.

For Shi, the new technique shows the benefits of combining physics disciplines that don’t often interact. Says he: “Putting fields together gives tremendous power to explain things that we couldn’t understand before.”

Read the abstract

Yuan Shi, Nathaniel J. Fisch, and Hong Qin. Effective-action approach to wave propagation in scalar QED plasmas. Phys. Rev. A 94, 012124 – Published 29 July 2016.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by Princeton University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Unconventional quasiparticles predicted in conventional crystals (Science)

Fermi arcs on the surface of uncoventional materials
Two electronic states known as Fermi arcs, localized on the surface of a material, stem out of the projection of a 3-fold degenerate bulk new fermion. This new fermion is a cousin of the Weyl fermion discovered last year in another class of topological semimetals. The new fermion has a spin-1, a reflection of the 3- fold degeneracy, unlike the spin-½ that the recently discovered Weyl fermions have.

By Staff

An international team of researchers has predicted the existence of several previously unknown types of quantum particles in materials. The particles — which belong to the class of particles known as fermions — can be distinguished by several intrinsic properties, such as their responses to applied magnetic and electric fields. In several cases, fermions in the interior of the material show their presence on the surface via the appearance of electron states called Fermi arcs, which link the different types of fermion states in the material’s bulk.

The research, published online this week in the journal Science, was conducted by a team at Princeton University in collaboration with researchers at the Donostia International Physics Center (DIPC) in Spain and the Max Planck Institute for Chemical Physics of Solids in Germany. The investigators propose that many of the materials hosting the new types of fermions are “protected metals,” which are metals that do not allow, in most circumstances, an insulating state to develop. This research represents the newest avenue in the physics of “topological materials,” an area of science that has already fundamentally changed the way researchers see and interpret states of matter.

The team at Princeton included Barry Bradlyn and Jennifer Cano, both associate research scholars at the Princeton Center for Theoretical Science; Zhijun Wang, a postdoctoral research associate in the Department of Physics, Robert Cava, the Russell Wellman Moore Professor of Chemistry; and B. Andrei Bernevig, associate professor of physics. The research team also included Maia Vergniory, a postdoctoral research fellow at DIPC, and Claudia Felser, a professor of physics and chemistry and director of the Max Planck Institute for Chemical Physics of Solids.

For the past century, gapless fermions, which are quantum particles with no energy gap between their highest filled and lowest unfilled states, were thought to come in three varieties: Dirac, Majorana and Weyl. Condensed matter physics, which pioneers the study of quantum phases of matter, has become fertile ground for the discovery of these fermions in different materials through experiments conducted in crystals. These experiments enable researchers to explore exotic particles using relatively inexpensive laboratory equipment rather than large particle accelerators.

In the past four years, all three varieties of gapless fermions have been theoretically predicted and experimentally observed in different types of crystalline materials grown in laboratories around the world. The Weyl fermion was thought to be last of the group of predicted quasiparticles in nature. Research published earlier this year in the journal Nature (Wang et al., doi:10.1038/nature17410) has shown, however, that this is not the case, with the discovery of a bulk insulator which hosts an exotic surface fermion.

In the current paper, the team predicted and classified the possible exotic fermions that can appear in the bulk of materials. The energy of these fermions can be characterized as a function of their momentum into so-called energy bands, or branches. Unlike the Weyl and Dirac fermions, which, roughly speaking, exhibit an energy spectrum with 2- and 4-fold branches of allowed energy states, the new fermions can exhibit 3-, 6- and 8-fold branches. The 3-, 6-, or 8-fold branches meet up at points – called degeneracy points – in the Brillouin zone, which is the parameter space where the fermion momentum takes its values.

“Symmetries are essential to keep the fermions well-defined, as well as to uncover their physical properties,” Bradlyn said. “Locally, by inspecting the physics close to the degeneracy points, one can think of them as new particles, but this is only part of the story,” he said.

Cano added, “The new fermions know about the global topology of the material. Crucially, they connect to other points in the Brillouin zone in nontrivial ways.”

During the search for materials exhibiting the new fermions, the team uncovered a fundamentally new and systematic way of finding metals in nature. Until now, searching for metals involved performing detailed calculations of the electronic states of matter.

“The presence of the new fermions allows for a much easier way to determine whether a given system is a protected metal or not, in some cases without the need to do a detailed calculation,” Wang said.

Verginory added, “One can just count the number of electrons of a crystal, and figure out, based on symmetry, if a new fermion exists within observable range.”

The researchers suggest that this is because the new fermions require multiple electronic states to meet in energy: The 8-branch fermion requires the presence of 8 electronic states. As such, a system with only 4 electrons can only occupy half of those states and cannot be insulating, thereby creating a protected metal.

“The interplay between symmetry, topology and material science hinted by the presence of the new fermions is likely to play a more fundamental role in our future understanding of topological materials – both semimetals and insulators,” Cava said.

Felser added, “We all envision a future for quantum physical chemistry where one can write down the formula of a material, look at both the symmetries of the crystal lattice and at the valence orbitals of each element, and, without a calculation, be able to tell whether the material is a topological insulator or a protected metal.”

Read the abstract.

Funding for this study was provided by the US Army Research Office Multidisciplinary University Research Initiative, the US Office of Naval Research, the National Science Foundation, the David and Lucile Packard Foundation, the W. M. Keck Foundation, and the Spanish Ministry of Economy and Competitiveness.

Theorists smooth the way to solving one of quantum mechanics oldest problems: Modeling quantum friction (J. Phys. Chem. Letters)

Researchers at Princeton
From left to right: Herschel Rabitz, Renan Cabrera, Andre Campos and Denys Bondar. Photo credit: C. Todd Reichart

By: Tien Nguyen, Department of Chemistry

Theoretical chemists at Princeton University have pioneered a strategy for modeling quantum friction, or how a particle’s environment drags on it, a vexing problem in quantum mechanics since the birth of the field. The study was published in the Journal of Physical Chemistry Letters.

“It was truly a most challenging research project in terms of technical details and the need to draw upon new ideas,” said Denys Bondar, a research scholar in the Rabitz lab and corresponding author on the work.

Quantum friction may operate at the smallest scale, but its consequences can be observed in everyday life. For example, when fluorescent molecules are excited by light, it’s because of quantum friction that the atoms are returned to rest, releasing photons that we see as fluorescence. Realistically modeling this phenomenon has stumped scientists for almost a century and recently has gained even more attention due to its relevance to quantum computing.

“The reason why this problem couldn’t be solved is that everyone was looking at it through a certain lens,” Bondar said. Previous models attempted to describe quantum friction by considering the quantum system as interacting with a surrounding, larger system. This larger system presents an impossible amount of calculations, so in order to simplify the equations to the pertinent interactions, scientists introduced numerous approximations.

These approximations led to numerous different models that could each only satisfy one or the other of two critical requirements. In particular, they could either produce useful observations about the system, or they could obey the Heisenberg Uncertainty Principle, which states that there is a fundamental limit to the precision with which a particle’s position and momentum can be simultaneous measured. Even famed physicist Werner Heisenberg’s attempt to derive an equation for quantum friction was incompatible with his own uncertainty principle.

The researchers’ approach, called operational dynamic modeling (ODM) and introduced in 2012 by the Rabitz group, led to the first model for quantum friction to satisfy both demands. “To succeed with the problem, we had to literally rethink the physics involved, not merely mathematically but conceptually,” Bondar said.

Bondar and his colleagues focused on the two ultimate requirements for their model – that it should obey the Heisenberg principle and produce real observations – and worked backwards to create the proper model.

“Rather than starting with approximations, Denys and the team built in the proper physics in the beginning,” said Herschel Rabitz, the Charles Phelps Smyth ’16 *17 Professor of Chemistry and co-author on the paper. “The model is built on physical and mathematical truisms that must hold. This distinct approach creates a new rigorous and practical formulation for quantum friction,” he said.

The research team included research scholar Renan Cabrera and Ph.D. student Andre Campos as well as Shaul Mukamel, professor of chemistry at the University of California, Irvine.

Their model opens a way forward to understand not only quantum friction but other dissipative phenomena as well. The researchers are interested in exploring the means to manipulate these forces to their advantage. Other theorists are rapidly taking up the new paradigm of operational dynamic modeling, Rabitz said.

Reflecting on how they arrived at such a novel approach, Bondar recalled the unique circumstances under which he first started working on this problem. After he received the offer to work at Princeton, Bondar spent four months awaiting a US work visa (he is a citizen of the Ukraine) and pondering fundamental physics questions. It was during this time that he first thought of this strategy. “The idea was born out of bureaucracy, but it seems to be holding up,” Bondar said.

Read the full article here:

Bondar, D. I.; Cabrera, R.; Campos, A.; Mukamel, S.; Rabitz, H. A. “Wigner-Lindblad Equations for Quantum Friction.J. Phys. Chem. Lett. 2016, 7, 1632.

This work was supported by the US National Science Foundation CHE 1058644, the US Department of Energy DE-FG02-02ER-15344, and ARO-MURI W911NF-11-1-0268.