﻿ Stochastic Analysis Seminar | Princeton University | Page 2

Lecture 8. Entropic cone and matroids

This lecture introduces the notion of the entropic cone and its connection with entropy inequalities.

Entropic cone

Recall that if is a discrete random variable with distribution , the entropy of is defined as

Now let be (not necessarily independent) discrete random variables. It will be convenient to define the entropy function

As the entropy depends only on the probabilities of the outcomes of a random variable and not on its values, we will assume without loss of generality in the sequel that take values in .

For any probability on , let be the -dimensional vector

We can now define the entropic cone.

Definition. The entropic cone is the set

i.e., the set of all vectors that can be obtained as the entropy function of variables.

Question. Can we characterize ?

Examples.

1. If , then , as there exist random variables of arbitrary (nonnegative) entropy.
2. If , the vector for is

What constraints must this vector satisfy? We must certainly have

which follows from the chain rule together with positivity for the first inequality, and that conditioning reduces entropy for the second. Are these the only constraints? In fact, we can create many vectors given these constraints. For example:

• The vector is obtained by taking such that , and letting .
• The vector is obtained by taking to be i.i.d. copies of .
• Convex combinations of these vectors can be obtained by taking mixtures of their distributions.

In fact, a careful analysis shows that the above constraints completely characterize the entropic cone for : that is,

3. If , what happens? Here we are are still subject to the same constraints as in the case , but we pick up some new constraints as well such as

which is equivalent to the inequality .

Evidently, the constraints on the entropic cone correspond to entropy inequalities. What type of inequalities must hold for any given ? Let us think about this question a bit more systematically.

Definition. A set function is called a polymatroid if

1. , for all .
2. when (monotonicity).
3. (submodularity).

It is not difficult to check that

Lemma. The entropy function is a polymatroid.

Other examples of polymatroids: (1) entropy, mutual information; (2) max-weight for given weights ; (3) flows; (4) cuts (not monotone, but submodular); (5) Von Neumann entropy.

Let us define

Evidently is a polyhedral cone (the intersection of a finite number of halfplanes).

Theorem.

1. .
2. .
3. for .
4. is a convex cone for all (but not polyhedral for ).

For the proof, we refer to the book for R. Yeung.

As an example of , we note that the vector is only achievable when for some . Let us also note that convexity of holds in its interior but not on the boundary. However, issues only arise on the boundary of , that is, no new entropy inequalities appear beyond the polymatroid inequalities when .

On the other hand, when , many new inequalities are introduced that actually cause holes to appear within . One such inequality (expressed in terms of mutual information) is

Using the entropic cone

The entropic cone can be used to obtain new information theoretic inequalities. For example, the following question arose in the study of mechanism design in computer science.

Problem. Let be discrete random variables. Define the matrix as . Is positive definite?

When , we have since . Thus all the principal minors of have positive determinant, so is positive definite.

How about ? Note that depends linearly on the entries of the vector (where is the joint distribution of ). Thus if is positive definite for distributions on the extreme rays (ER) of the entropic cone, then must be positive definite for any distribution. More generally:

Proposition. If is convex, then holds for all if and only if for all .

Proof. It suffices to note that

for every , and to use that .

This necessary and sufficient condition for generalizes to a sufficient condition for .

Proposition. If is convex, then holds for all if for all .

As is polyhedral, this simplifies solving problems such as checking positive definiteness of significantly: it suffices to check a finite number of cases, which can essentially be done by hand. It can be shown this way that is always positive definite for , but this can fail for .

Matroids

It is sometimes of interest to investigate discrete variants of the above questions.

Definition. A matroid is defined by the conditions

1. for all ;
2. is monotone;
3. is submodular.

Examples.

1. Vector matroids (also called -representable matroids, where is a field). Given a matrix with values in , define where denotes the columns induced by .
2. Graphical matroids. Let be a graph, and choose . Then define , where the maximum is taking over acyclic subgraphs .
3. Entropic matroids. Let . For what distributions of is this a matroid?

Denote by the entropic cone induced by those distributions where take values in . In order for such a distribution to define an entropic matroid, the vector must take values in . Thus we are led to consider the set

Can one characterize what type of matroids can arise as entropic matroids?

Theorem. coincides with the set of all -representable matroids with elements.

For the proof and further results around this theme, see the paper of E. Abbe.

Lecture by Emmanuel Abbe | Scribed by Danny Gitelman

06. December 2013 by Ramon van Handel
Categories: Information theoretic methods | Comments Off on Lecture 8. Entropic cone and matroids

Lecture 7. Entropic CLT (4)

This lecture completes the proof of the entropic central limit theorem.

From Fisher information to entropy (continued)

In the previous lecture, we proved the following:

Theorem. If are independent random variables with , then

(1)

where are weights satisfying and is any fractional packing of the hypergraph in the sense that for every .

By optimizing the choice of the weights, it is easy to check that (1) is equivalent to

In fact, an analogous statement holds for entropy:

(2)

Proving (2) for general fractional packings and general hypergraphs requires some additional steps that we will avoid here. Instead, we will prove the a special case, due to Artstein, Ball, Barthe and Naor (2004), that suffices to resolve the question of monotonicity of entropy in the CLT.

In the following, let be the set of all subsets of of size and take for every . In this case, (2) takes the following form.

Theorem EPI. If are independent random variables, then

provided that all the entropies exist.

To prove Theorem EPI, we will use the de Bruijn identity which was discussed in the previous lecture. Let us rewrite it in a useful form for the coming proof and give a proof.

Theorem (de Bruijn identity). Let be a random variable with density on . Let , , where is independent of . We have

In particular,

(3)

Proof. Let be the density of . Then

where . It is easy to check that . Hence,

Integrating from to gives (3).

Proof of Theorem EPI. In (1), let be the set of all subsets of of size and . We have

(4)

where, is the weight corresponding to the set . It is easy to check that (4) is equivalent, for every with , to

Note the last equality is due to the scaling property of Fisher information. Recalling that are arbitrarily chosen weights with , we conclude that

(5)

for any choice of with and with .

Let us keep the choice of such arbitrary for the moment and let . Then

(6)

Let , where is independent of all else. Then

Note that

where the equality in distribution is due to the fact that . Hence, by (6),

We use de Bruijn identity to integrate this from to over time and get

By (6) again,

(7)

This is the entropy analog of the Fisher information inequality obtained above.

As a final step, let . We are to show

If for some , the result is immediate due to the general fact (convolution increases entropy). Hence, we assume that for every , so

Set , . Note that

With this choice of , we apply (7). After some computations, we get

Using the definition of the , the final result follows from here immediately.

Proof of the Entropic Central Limit Theorem

Entropic CLT. Suppose that are i.i.d. random variables with and . Let . If for some , then as . Equivalently, if for some , then as .

In the case of i.i.d. random variables, Theorem EPI gives

which is equivalent to because of the identity . Therefore, it remains to show as . For this, we need some analytical properties of the relative entropy. Henceforth, we use to denote the set of all probability measures on some Polish space (take for instance).

Proposition (Variational characterization of ). Let . Then

where denotes the set of all bounded measurable functions .

Remark.

1. In the variational characterization of above, it is enough to take the supremum over the set of all bounded continuous functions .
2. For fixed , the mapping is convex and continuous. Since is the supremum over a class of convex, continuous functions, it is convex and lower semicontinuous. These properties of relative entropy, made transparent by the variational characterization, are very useful in many different contexts.

Corollary. Sublevel sets of are compact, that is, the set is compact (with respect to the topology of weak convergence) for every and .

Before we prove the corollary, let us recall the definition of tightness and Prohorov Theorem.

Definition (Tightness). A set is called tight if for every there exists a compact set such that for every .

Prohorov Theorem. A set is weakly precompact if and only if it is tight.

Proof of Corollary. Let be a sequence in with . By the variational characterization of , for every , we have

(8)

Note that is a tight set as a singleton. We claim that the sequence is also tight. Indeed, let and let be a compact set with . We take and apply (8) to get

Hence,

where the rightmost term can be made arbitrarily small. Hence, is tight. By Prohorov Theorem, there exists such that as . By lower semicontinuity of , we have

This finishes the proof of the corollary.

Proof of Variational Characterization of . As a first case, suppose . So and there exists a Borel set with and . Let . We have

as . Hence, both sides of the variational characterization are equal to .

For the rest, we assume . First, we show the part. If , the inequality is obvious. Suppose . Given , define a probability measure by

So

Since is chosen arbitrarily, taking supremum on the right hand side gives the part.

Next, we prove the part. Note that if , then . However, this choice of may not be in , that is, may fail to be bounded or bounded away from zero. So we employ the following truncation argument. Let

so that as . Note that and . Thus we have

by monotone convergence. On the other hand, by Fatou’s Lemma, we have

Hence,

from which the part of the result follows.

Building on these now standard facts (whose exposition above follows that in the book of Dupuis and Ellis), Harremoes and Vignat (2005) gave a short proof of the desired convergence, which we will follow below. It relies on the fact that for uniformly bounded densities within the appropriate moment class, pointwise convergence implies convergence of entropies.

Lemma. If are random variables with , , and the corresponding densities are uniformly bounded with as (pointwise) for some density , then and as .

Proof. Recall for with mean and variance . By lower semicontinuity of , we have

On the other hand, letting , we have

and using Fatou’s Lemma,

Hence, as .

End of proof of Entropic CLT. Assume . We will use to denote normalized Fisher information. For any , we have that for . So as for every . We want to show that , since then we will get by Lebesgue’s dominated convergence theorem that

as . But since

it is enough to show that for each .

By the monotonicity property we have proved, we know that

for any . By compactness of sublevel sets of , the sequence must therefore have a subsequence whose distribution converges to a probability measure (let us call a random variable with this limiting measure as its distribution). For , the smoothing caused by Gaussian convolution implies that the density of converges pointwise to that of , and also that the density of converges pointwise to that of , where is an independent copy of . By the previous lemma

as , and

so that necessarily

By the equality condition in the entropy power inequality, this can only happen if is Gaussian, which in turn implies that .

Lecture by Mokshay Madiman | Scribed by Cagin Ararat

05. December 2013 by Ramon van Handel
Categories: Information theoretic methods | Comments Off on Lecture 7. Entropic CLT (4)

Schedule for rest of the semester

Here is the schedule for the remaining three lectures of the semester:

November 21: Emmanuel Abbe on information theoretic inequalities.

November 28: No lecture (Thanksgiving).

December 5 and 12: Ramon van Handel on transportation-information inequalities and concentration.

The remaining notes on the entropic CLT (Lecture 7) will be posted soon.

20. November 2013 by Ramon van Handel
Categories: Announcement | Comments Off on Schedule for rest of the semester

Lecture 6. Entropic CLT (3)

In this lecture, we complete the proof of monotonicity of the Fisher information in the CLT, and begin developing the connection with entropy. The entropic CLT will be completed in the next lecture.

Variance drop inequality

In the previous lecture, we proved the following decomposition result for functions of independent random variables due to Hoeffding.

ANOVA decomposition. Let be independent random variables taking values in , and let be such that . Then satisfies

Furthermore, .

Note that is a function only of ( are the ordered elements of ).

In the previous lecture, we proved subadditivity of the inverse Fisher information . The key part of the proof was the observation that the score function of the sum could be written as the conditional expectation of a sum of independent random variables, whose variance is trivially computed. This does not suffice, however, to prove monotonicity in the CLT. To do the latter, we need a more refined bound on the Fisher information in terms of overlapping subsets of indices. Following the same proof, the score function of the sum can be written as the conditional expectation of a sum of terms that are now no longer independent. To estimate the variance of this sum, we will use the following “variance drop lemma” whose proof relies on the ANOVA decomposition.

Lemma. Let where and is some collection of subsets of . If are independent random variables with , then

where is a fractional packing with respect to .

Remarks.

1. Recall that a fractional packing is a function such that

Example 1. Let , and define . Taking always defines a fractional packing as by definition of .

Example 2. If , then .

2. The original paper of Hoeffding (1948) proves the following special case where each is symmetric in its arguments and is as in Example 2 above: (the -statistic) satisfies

Of course, if then . Thus Hoeffding’s inequality for the variance of -statistics above and the more general variance drop lemma should be viewed as capturing how much of a drop we get in variance of an additive-type function, when the terms are not independent but have only limited dependencies (overlaps) in their structure.

Proof. We may assume without loss of generality that each has mean zero.

We then have, using orthogonality of the terms in the ANOVA decomposition:

For each term, we have

where the second inequality follows from the definition of fractional packing if is non-empty, and the fact that takes any to its mean. Hence

again using orthogonality of the in the last step.

Monotonicity of Fisher information

We can now finally prove monotonicity of the Fisher information.

Corollary. Let be independent random variables with . Then

for any hypergraph on , fractional packing , and positive weights summing to 1.

Proof. Recall that and . The identity proved in the last lecture states

With , we can write

since . By taking a convex combination of these identities,

Now by using the Pythagorean inequality (or Jensen’s inequality) and the variance drop lemma, we have

as desired.

Remark. The being arbitrary weights, we can optimize over them. This gives

With being all singletons and we recover the superadditivity property of . With being all sets of size and , we get

Thus we have proved the monotonicity of Fisher information in the central limit theorem.

From Fisher information to entropy

Having proved monotonicity for the CLT written in terms of Fisher information, we now want to show the analogous statement for entropy. The key tool here is the de Bruijn identity.

To formulate this identity, let us introduce some basic quantities. Let on , and define

where . Denote by the density of . The following facts are readily verified for :

1. .
2. is smooth.
3. .
4. .

Observe that has density , and that as , converges to , which has a standard Gaussian distribution. Thus provides an interpolation between the density and the normal density.

Remark. Let us recall some standard facts from the theory of diffusions. The Ornstein-Uhlenbeck process is defined by the stochastic differential equation

where is Brownian motion. This is, like Brownian motion, a Markov process, but the drift term (which always pushes trajectories towards 0) ensures that it has a stationary distribution, unlike Brownian motion. The Markov semigroup associated to this Markov process, namely the semigroup of operators defined on an appropriate domain by

has a generator (defined via ) given by . The semigroup generated by governs the evolution of conditional expectations of functions of the process , while the adjoint semigroup generated by governs the evolution of the marginal density of . The above expression for follows from this remark by noting that and are the same in distribution; however, it can also be deduced more simply just by writing down the density of explicitly, and using the smoothness of the Gaussian density to verify each part of the claim.

We can now formulate the key identity.

de Bruijn identity. Let be the density of the standard normal .

1. Differential form:

where is the normalized Fisher information.

2. Integral form:

The differential form follows by using the last part of the claim together with integration by parts. The integral form follows from the differential form by the fundamental theorem of calculus, since

which yields the desired identity since .

This gives us the desired link between Fisher information and entropy. In the next lecture, we will use this to complete the proof of the entropic central limit theorem.

Lecture by Mokshay Madiman | Scribed by Georgina Hall

13. November 2013 by Ramon van Handel
Categories: Information theoretic methods | Comments Off on Lecture 6. Entropic CLT (3)

Lecture 5. Entropic CLT (2)

The goal of this lecture is to prove monotonicity of Fisher information in the central limit theorem. Next lecture we will connect Fisher information to entropy, completing the proof of the entropic CLT.

Two lemmas about the score function

Recall that for a random variable with absolutely continuous density , the score function is defined as and the Fisher information is .

The following lemma was proved in the previous lecture.

Lemma 1. Let be a random variable with finite Fisher information. Let be measurable and let . If is bounded on the interval , then the function is absolutely continuous on with a.e.

There is a converse to the above lemma, which gives a useful characterization of the score function.

Lemma 2. Let be a random variable with density and let be a measurable function with . Suppose that for every bounded measurable function , the function is absolutely continuous on with a.e. Then there must exist an absolutely continuous version of the density , and moreover a.s.

Proof. Take . Then

Hence is in fact continuously differentiable with derivative . On the other hand,

by our assumption. By continuity of and the assumption , we must have

for every . Hence a.e. Since , the proof is complete.

Score function of the sum of independent variables

We now show a key property of the score function: the score function of the sum of two independent random variables is a projection.

Proposition. Let and be two independent random variables. Suppose has finite Fisher information. Then a.s.

Proof. Let . By Lemma 2, we only need to show that the function is locally absolutely continuous with a.e. for every bounded measurable function .

Fix . By independence of and , we can apply Lemma 1 to (conditioned on ) to obtain

Taking expectation of both sides and applying Fubini, we get

Since

we arrive at

which implies a.e.

Remark. The well-known interpretation of conditional expectation as a projection means that under the assumption of finite Fisher information (i.e., score functions in ), the score function of the sum is just the projection of the score of a summand onto the closed subspace . This implies directly, by the Pythagorean inequality, that convolution decreases Fisher information: . In fact, we can do better, as we will see forthwith.

Monotonicity of FI in the CLT along a subsequence

We now make a first step towards proving monotonicity of the Fisher information in the CLT.

Theorem. Let and be independent random variables both with finite Fisher information. Then

for any .

Before going into the proof, we make some remarks.

Remark. Taking , we get . Hence the above theorem is a significant strengthening of the simple fact that convolution decreases Fisher information.

Remark. By taking , we get the following optimized version of the theorem:

Remark. Let be an i.i.d. sequence of random variables with mean zero and unit variance. Let . By taking in the theorem and using scaling property of Fisher information, it is easy to obtain . Hence, the above theorem already implies monotonicity of Fisher information along the subsequence of times : that is, is monotone in .
However, the theorem is not strong enough to give monotonicity without passing to a subsequence. For example, if we apply the previous remark repeatedly we only get , which is not very interesting. To prove full monotonicity of the Fisher information, we will need a strengthening of the above Theorem. But it is instructive to first consider the proof of the simpler case.

Proof. By the projection property of the score function,

Hence

Applying the conditional Jensen inequality, we obtain,

Taking expectations of both sides and using independence, we obtain

By Lemma 1, . This finishes the proof.

Monotonicity of Fisher information in the CLT

To prove monotonicity of the Fisher information in the CLT (without passing to a subsequence) we need a strengthening of the property of Fisher information given in the previous section.

In the following, we will use the common notation .

Definition. Let be a collection of non-empty subsets of . Then a collection of non-negative numbers is called a fractional packing for if for all .

We can now state the desired strengthening of our earlier theorem.

Theorem. Let be a fractional packing for and let be independent random variables. Let be a collection of real numbers such that . Then

and

Remark. Suppose that the are identically distributed. Take . For each , define . It is easy to check that is a fractional packing of . Then

by the above theorem. By the scaling property of Fisher information, this is equivalent to , i.e., monotonicity of the Fisher information. This special case was first proved by Artstein, Ball, Barthe and Naor (2004) with a more complicated proof. The proof we will follow of the more general theorem above is due to Barron and Madiman (2007).

The proof of the above theorem is based on an analysis of variance (ANOVA) type decomposition, which dates back at least to the classic paper of Hoeffding (1948) on U-statistics. To state this decomposition, let be independent random variables, and define the Hilbert space

with inner product

For every , define an operator on as

Proposition. Each can be decomposed as

where

satisfies

1. if ;
2. if ;
3. does not depend on if .

Proof. It is easy to verify that is a projection operator, that is, and (self-adjointness). It is also easy to see that for . Hence we have

If , choose such that . Then

It is easily verified that is itself self-adjoint, so that follows directly. Finally, as by definition does not depend on , it is clear that does not depend on if .

The decomposition will be used in the form of the following variance drop lemma whose proof we postpone to next lecture. Here for , .

Lemma. Let be a fractional packing for . Let . Suppose that for each . Then

To be continued…

Lecture by Mokshay Madiman | Scribed by Liyao Wang

06. November 2013 by Ramon van Handel
Categories: Information theoretic methods | Comments Off on Lecture 5. Entropic CLT (2)

Next lecture: November 7

A quick reminder that next week is Fall break (no lecture). The next lecture will take place on Thursday, November 7: Mokshay will resume the proof of the entropic central limit theorem.

24. October 2013 by Ramon van Handel
Categories: Announcement | Comments Off on Next lecture: November 7

Lecture 4. Entropic CLT (1)

The subject of the next lectures will be the entropic central limit theorem (entropic CLT) and its proof.

Theorem (Entropic CLT). Let be i.i.d. real-valued random variables with mean zero and unit variance. Let

If for some , then , or equivalently . That is, the entropy of increases monotonically to that of the standard Gaussian.

Recall that when is Gaussian with the same mean and variance as , which explains the equivalence stated in the theorem.

Let us note that the assumption for some represents a genuine (but not unexpected) restriction: in particular, it implies that the entropic CLT does not apply if are discrete.

Entropy power inequality

Historically, the first result on monotonicity of entropy in the CLT was that for all . This follows directly from an important inequality for entropy, the entropy power inequality (EPI). The rest of this lecture and part of the next lecture will be devoted to proving the EPI. While the EPI does not suffice to establish the full entropic CLT, the same tools will prove to be crucial later on.

Entropy power inequality. Let and be independent real-valued random variables such that , , and all exist. Then

with equality if and only if and are Gaussian.

Before we embark on the proof, let us make some remarks.

Remark. None of the assumptions about existence of entropies is redundant: it can happen that and exist but does not.

Remark. If and are i.i.d., , and , then the EPI implies

which implies . Here we have used the easy-to-check equality , which of course implies . From this observation, the proof of the claim that is immediate: simply note that is the sum of two independent copies of .

Remark. It is easy to check that . In fact, this is true in much more general settings (e.g. on locally compact groups, with entropy defined relative to Haar measure). The EPI is a much stronger statement particular to real-valued random variables.

Remark. The EPI admits the following multidimensional extension.

Multidimensional EPI. Let and be independent -valued random vectors such that , , and all exist. Then

with equality if and only if and are Gaussian with proportional covariance matrices.

Define the entropy power for an -valued random vector by

The EPI says that is superadditive under convolution.

Digression: EPI and Brunn-Minkowski

A good way to develop an appreciation for what the EPI is saying is in analogy with the Brunn-Minkowski inequality. If are Borel sets and denotes -dimensional Lebesgue measure, then

where is the Minkowski sum. In particular, note that is proportional up to an absolute constant to the radius of the -dimensional Euclidean ball whose volume matches that of . The Brunn-Minkowski inequality expresses superadditivity of this functional (and we clearly have equality for balls). The Brunn-Minkowski inequality is of fundamental importance in various areas of mathematics: for example, it implies the isoperimetric inequality in , which states that Euclidean balls with volume have the minimal surface area among all subsets of with volume .

In a sense, the EPI is to random variables as the Brunn-Minkowski inequality is to sets. The Gaussians play the role of the balls, and variance corresponds to radius. In one dimension, for example, since

we see that is proportional to the variance of the Gaussian whose entropy matches that of . The entropy power inequality expresses superadditivity of this functional, with equality for Gaussians.

Proposition. The EPI is equivalent to the following statement: if and are independent and and are independent Gaussians with and , then provided that all of the entropies exist.

Proof of the entropy power inequality

There are many proofs of the EPI. It was stated by Shannon (1948) but first fully proven by Stam (1959); different proofs were later provided by Blachman (1969), Lieb (1978), and many others. We will follow a simplified version of Stam’s proof. We work from now on in the one-dimensional case for simplicity.

Definition (Fisher information). Let be a -valued random variable whose density is an absolutely continuous function. The score function of is defined as

The Fisher information (FI) of is defined as

Remark. Let be a parametric statistical model. In statistics, the score function is usually defined by , and the Fisher information by . This reduces to our definition in the special case of location families, where for some probability density : in this case, and we have

Thus for location families does not depend on and coincides precisely with the Fisher information as we defined it above for a random variable with density . The statistical interpretation allows us do derive a useful inequality. Suppose for simplicity that . Then for every , so is an unbiased estimator of . The Cramér-Rao bound therefore implies the inequality

with equality if and only if is Gaussian. The same conclusion holds when is arbitrary, as both FI and variance are invariant under translation.

Remark. There is a Fisher information analogue of the entropic CLT: in the setup of the entropic CLT, subject to an additional variance constraint, we have . Moreover, Fisher information is minimized by Gaussians. This is often stated in terms of normalized Fisher information, defined as . Note that is both translation and scale invariant: and . We have , with equality if and only if is Gaussian, by the previous remark. The Fisher information analogue of the entropic CLT can now be restated as .

The strategy of the proof of the EPI is as follows:

1. We first prove an inequality for Fisher information:

2. Develop an integral identity relating and .
3. Combine (1) and (2) to get the EPI.

The reason to concentrate on Fisher information is that is an -type quantity, as opposed to the entropy which is an -type quantity. This makes easier to work with.

We begin with some technical results about Fisher information.

Lemma. If has absolutely continuous density and , then has bounded variation. In particular, is bounded.

Proof. Let denote the set of points at which is differentiable, so that . Define for . Let . Then

Lemma. Let be measurable. Let be defined as . If is bounded, then defined by is absolutely continuous on with a.e.

Proof. Let ; we want to show that is absolutely continuous with derivative . First observe that is integrable on from the Cauchy-Schwarz inequality and the boundedness condition. Thus we can compute

which proves the desired result.

Corollary. and, if , then .

Proof. Take in the lemma above for the first claim. Take for the second.

To be continued…

Lecture by Mokshay Madiman | Scribed by Dan Lacker

23. October 2013 by Ramon van Handel
Categories: Information theoretic methods | Comments Off on Lecture 4. Entropic CLT (1)

Next lecture: one-time room change

The next lecture is on October 17. Please note that we have a one time room change to Sherrerd Hall Room 101 on October 17 as the usual Bendheim room is in use for another event. We will return to the Bendheim center the following week for the rest of the semester.

10. October 2013 by Ramon van Handel
Categories: Announcement | Comments Off on Next lecture: one-time room change

Lecture 3. Sanov’s theorem

The goal of this lecture is to prove one of the most basic results in large deviations theory. Our motivations are threefold:

1. It is an example of a probabilistic question where entropy naturally appears.
2. The proof we give uses ideas typical in information theory.
3. We will need it later to discuss the transportation-information inequalities (if we get there).

What is large deviations?

The best way to start thinking about large deviations is to consider a basic example. Let be i.i.d. random variables with and . The law of large numbers states that

To say something quantitative about the rate of convergence, we need finer limit theorems. For example, the central limit theorem states that

Therefore, for any fixed , we have

(the probability converges to a value strictly between zero and one). Informally, this implies that the typical size of is of order .

Rather than considering the probability of typical events, large deviations theory allows us to understand the probability of rare events, that is, events whose probabilities are exponentially small. For example, if , then the probability that is at least of order unity (a rare event, as we have just shown that the typical size is of order ) can be computed as

The probability of this rare event decays exponentially at rate . If the random variables have a different distribution, then these tail probabilities still decay exponentially but with a different rate function. The goal of large deviations theory is to compute precisely the rate of decay of the probabilities of such rare events. In the sequel, we will consider a more general version of this problem.

Sanov’s theorem

Let be i.i.d. random variables with values in a finite set and with distribution (random variables in a continuous space will be considered at the end of this lecture). Denote by the set of probabilities on . Let be the empirical distribution of :

The law of large numbers states that a.s. To define a rare event, we fix that does not contain . We are interested in behavior of probabilities of the form , as .

Example. Let be such that . Define for some . Then . Thus the rare events of the type described in the previous section form a special case of the present setting.

We are now in a position to state Sanov’s theorem, which explains precisely at what exponential rate the probabilities decay.

Theorem (Sanov). With the above notations, it holds that

In particular, for “nice” such that the left- and right-hand sides coincide we have the exact rate

In words, Sanov’s theorem states that the exponential rate of decay of the probability of a rare event is controlled by the element of that is closest to the true distribution in the sense of relative entropy.

There are many proofs of Sanov’s theorem (see, for example, the excellent text by Dembo and Zeitouni). Here we will utilize an elegant approach that uses a common device in information theory.

Method of types

It is a trivial observation that each possible value must appear an integer number of times among the samples . This implies, however, that the empirical measure cannot take arbitrary values: evidently it is always the case that , where we define

Each element of is called a type: it contains only the information about how often each value shows up in the sample, discarding the order in which they appear. The key idea behind the proof of Sanov’s theorem is that we can obtain a very good bound on the probability that the empirical measure takes the value for each type .

Type theorem. For every , we have

That is, up to a polynomial factor, the probability of each type behaves like .

In view of the type theorem, the conclusion of Sanov’s theorem is not surprising. The type theorem implies that types such that have exponentially smaller probability than the “optimal” distribution that minimizes the relative entropy in . The probability of the rare event is therefore controlled by the probability of the most likely type. In other words, we have the following intuition, common in large deviation theory: the probability of a rare event is dominated by the most likely of the unlikely outcomes. The proof of Sanov’s theorem makes this intuition precise.

Proof of Sanov’s theorem.

Upper bound. Note that

This yields

[Note that in the finite case, by continuity, the infimum over equals the infimum over as stated in the theorem. The closure becomes more important in the continuous setting.]

Lower bound. Note that is dense in . As is open, we can choose for each , such that . Therefore,

It follows that

[Note that despite that we are in the finite case, it is essential to consider the interior of .]

Of course, all the magic has now shifted to the type theorem itself: why are the probabilities of the types controlled by relative entropy? We will presently see that relative entropy arises naturally in the proof.

Proof of the type theorem. Let us define

Then we can write

It is therefore sufficient to prove that for every

To show this, the key idea is to utilize precisely the same expression for given above, for the case that the distribution that defined the empirical measure is replaced by (which is a type). To this end, let us denote by the empirical measure of i.i.d. random variables with distribution .

Upper bound. We simply estimate using the above expression

Lower bound. It seems intuitively plausible that for every , that is, the probability of the empirical distribution is maximized at the true distribution (“what else could it be?” We will prove it below.) Assuming this fact, we simply estimate

Proof of the claim. It remains to prove the above claim that for every . To this end, note that consists of all vectors such that of the entries take the value , of the entries take the value , etc. The number of such vectors is

It is now straightforward to estimate

Thus the claim is established.

Remark. It is a nice exercise to work out the explicit form of the rate function in the example considered at the beginning of this lecture. The resulting expression yields another basic result in large deviations theory, which is known as Cramèr’s theorem.

General form of Sanov’s theorem

The drawback to the method of types is that it relies heavily on the assumption that take values in a finite state space. In fact, Sanov’s theorem continues to hold in a much more general setting.

Let be a Polish space (think ), and let be i.i.d. random variables taking values in with distribution . Denote by the space of probability measures on endowed with the topology of weak convergence: that is, iff for every bounded continuous function . Now that we have specified the topology, it makes sense to speak of “open” and “closed” subsets of .

Theorem. In the present setting, Sanov’s theorem holds verbatim as stated above.

It turns out that the lower bound in the general Sanov theorem can be easily deduced from the finite state space version. The upper bound can also be deduced, but this is much more tricky (see this note) and a direct proof in the continuous setting using entirely different methods is more natural. [There is in fact a simple information-theoretic proof of the upper bound that is however restricted to sets that are sufficiently convex, which is an unnecessary restriction; see this classic paper by Csiszar.]

We will need the general form of Sanov’s theorem in the development of transportation-information inequalities. Fortunately, however, we will only need the lower bound. We will therefore be content to deduce the general lower bound from the finite state space version that we proved above.

Proof of the lower bound. It evidently suffices to consider the case that is an open set. We use the following topological fact whose proof will be given below: if is open and , then there is a finite (measurable) partition of and such that

Given such a set, the idea is now to reduce to the discrete case using the data processing inequality.

Define the function such that for . Then if and only if the empirical measure of lies in . Thus

As take values in a finite set, and as is open, we obtain from the finite Sanov theorem

where we have used the data processing inequality and in the last inequality. As was arbitrary, taking the supremum over completes the proof.

Proof of the topological fact. Sets of the form

for , , bounded continuous functions, and form a base for the weak convergence topology on . Thus any open subset must contain a set of this form for every (think of the analogous statement in : any open set must contain a ball around any ).

It is now easy to see that each set of this form must contain a set of the form used in the above proof of the lower bound in Sanov’s theorem. Indeed, as is a bounded function, we can find for each a simple function such that . Clearly implies , so we can replace the functions by simple functions. But then forming the partition generated by the sets that define these simple functions, it is evident that if is chosen sufficiently small, then for all implies . The proof is complete.

Remark. It is also possible to work with topologies different than the topology of weak convergence. See, for example, the text by Dembo and Zeitouni for further discussion.

Lecture by Ramon van Handel | Scribed by Quentin Berthet

10. October 2013 by Ramon van Handel
Categories: Information theoretic methods | Comments Off on Lecture 3. Sanov’s theorem

Next lecture: October 17

Next week (October 10) there will be no stochastic analysis seminar due to conflicting events:

03. October 2013 by Ramon van Handel
Categories: Announcement | Comments Off on Next lecture: October 17

← Older posts