Author Archives: Sebastien Bubeck

Deep stuff about deep learning?

Unless you live a secluded life without internet (in which case you’re not reading those lines), odds are that you have heard and read about deep learning (such as in this 2012 article in the New York Times, or the … Continue reading

Posted in Optimization | 16 Comments

Some pictures in geometric probability

As I discussed in a previous blog post, I have been recently interested in models of randomly growing networks. As a starting point I focused my attention on the preferential attachment rule and its variants, in part because its ubiquity … Continue reading

Posted in Probability theory, Random graphs | 2 Comments

Guest post by Sasho Nikolov: Beating Monte Carlo

If you work long enough in any mathematical science, at some point you will need to estimate an integral that does not have a simple closed form. Maybe your function is really complicated. Maybe it’s really high dimensional. Often you … Continue reading

Posted in Theoretical Computer Science | 7 Comments

The entropic barrier: a simple and optimal universal self-concordant barrier

Ronen Eldan and I have just uploaded our new paper on the arxiv (it should appear tomorrow, for the moment you can see it here). The abstract reads as follows: We prove that the Fenchel dual of the log-Laplace transform … Continue reading

Posted in Optimization | Leave a comment

What’s the (hi)story of my network?

First an announcement: we have researcher and postdoc positions available in Theory Group at MSR, and I may have a position for an intern in the summer. If you are a talented young mathematician with interests in the kind of … Continue reading

Posted in Random graphs | Leave a comment

Komlos conjecture, Gaussian correlation conjecture, and a bit of machine learning

Today I would like to talk (somewhat indirectly) about a beautiful COLT 2014 paper by Nick Harvey and Samira Samadi. The problem studied in this paper goes as follows: imagine that you have a bunch of data points in with a certain … Continue reading

Posted in Optimization, Probability theory, Theoretical Computer Science | 4 Comments

A zest of number theory

I just encountered an amazing number theoretic result. It is probably very well known, but for those who never saw it it’s quite something, so I thought I would share it. Let be a positive integer. A partition of is … Continue reading

Posted in Theoretical Computer Science | Leave a comment

Probability in high dimension

The Barcelona events have just ended, and I’m happy to report that everything went very smoothly. In my opinion the quality of the works presented at COLT and at the Foundations of Learning Theory workshop were truly outstanding. I hope … Continue reading

Posted in Probability theory | Leave a comment

Theory of Convex Optimization for Machine Learning

I am extremely happy to release the first draft of my monograph based on the lecture notes published last year on this blog. (Comments on the draft are welcome!) The abstract reads as follows: This monograph presents the main mathematical … Continue reading

Posted in Optimization | 13 Comments

COLT 2014 accepted papers

The accepted papers for COLT 2014 have just been posted! This year we had a record number of 140 submissions, out of which 52 were accepted (38 for a 20mn presentation and 14 for a 5mn presentation). In my opinion … Continue reading

Posted in Conference/workshop | 1 Comment