Tag Archives: climate change

Truths we must tell ourselves to manage climate change (Vanderbilt Law Review)

Climate change is unwelcome news, and the best and worst outcomes consistent with current science are very different, says Princeton University’s Robert Socolow, professor of mechanical and aerospace engineering, in a new review article published in the Vanderbilt Law Review.  There are novel ways the environmental community, in its role as messenger, could tell the story about climate change using greater empathy and candor.  This essay, which was delivered as a keynote address at a symposium held Feb. 24, 2012 at the Vanderbilt Law School, addresses new ways to freshen the conversation.

The era of consciousness of climate change began in 1958 when Charles David Keeling began the first accurate measurements of carbon dioxide in the atmosphere. The seasonal oscillations were unexpected and the annual average has become a new index (the Keeling Curve) of global human impact.

Fifty-four years later, climate change negotiations in the United States and internationally are in paralysis. The current impasse has little social value and a “restart” button is needed. Such a button will be found when those already concerned about climate change become better at telling truths first to themselves and then to the general public. One can begin with acknowledgements that 1) climate change is unwelcome news, a challenge we would rather not have; and 2) the best and worst outcomes consistent with today’s climate change science are very different. Moreover, every nominal energy “solution” to climate change has a dark side and the solution’s proponents are not the ones to be counted upon to identify what can go wrong.

Accordingly, climate change is a problem of risk management requiring balancing the risks of disruption from climate change and the risks of disruption from mitigation and adaptation. Both public and private institutions need to find ways to overcome their reluctance to verify whether intended carbon reduction goals have actually occurred, so that progress can be accurately monitored and learning can occur. Individuals can be helped to become more aware of how their every-day activities create their carbon footprint. Population must reenter the conversation.

There are grounds for optimism. Science has discovered threats fairly early. Many helpful technologies are being developed and deployed. And, our moral compass is in working order, insisting that we care both for those alive today and for the collective future of our species.

Citation: Robert H. Socolow, “Truths We Must Tell Ourselves to Manage Climate Change.” Vanderbilt Law Review, Vol. 65, Number 6, pp. 1455-1478.

Read the full article: http://www.vanderbiltlawreview.org/content/articles/2012/11/Socolow_-65_Vand_L_Rev_1455.pdf

Changes in Greenland ice sheet over space and time (PNAS)

Polar ice sheets are melting and contributing to a global rise in sea-level. This study looked at changes in Greenland’s ice sheet from April 2002 to August 2011 and found that active areas of ice loss were concentrated on the southeastern and northwestern coasts, with ice mass in the center of Greenland steadily increasing over the decade.

Christopher Harig and Frederik J. Simons. Mapping Greenland’s mass loss in space and time. Proceedings of the National Academy of Sciences. Published online before print November 19, 2012, doi: 10.1073/pnas.1206785109

Read the abstract.

Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models (Nature Climate Change)

Efforts to predict North Atlantic hurricane activity should focus on improving the ability of global climate models to capture the processes that control patterns of sea surface temperature change through better modeling of cloud physics, atmospheric convection, oceanic processes, the role of aerosols, and overall improvements in spatial resolution of the models, according to a new study by Gabriele Villarini, a postdoctoral research associate in the Department of Civil and Environmental Engineering at Princeton University, and Gabriel A. Vecchi, a scientist at the U.S. National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory in Princeton.

Villarini G. and Vecchi GA. Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models, Nature Climate Change
Published online 13 May 2012

Read a summary of the paper (Geophysical Fluid Dynamic Laboratory)