An explanation for the mysterious onset of a universal process (Physics of Plasmas)

Solar flares
Magnetic reconnection happens in solar flares on the surface in the sun, as well as in experimental fusion energy reactors here on Earth. Image credit: NASA.

By John Greenwald, Princeton Plasma Physics Laboratory Communications

Scientists have proposed a groundbreaking solution to a mystery that has puzzled physicists for decades. At issue is how magnetic reconnection, a universal process that sets off solar flares, northern lights and cosmic gamma-ray bursts, occurs so much faster than theory says should be possible. The answer, proposed by researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University, could aid forecasts of space storms, explain several high-energy astrophysical phenomena, and improve plasma confinement in doughnut-shaped magnetic devices called tokamaks designed to obtain energy from nuclear fusion.

Magnetic reconnection takes place when the magnetic field lines embedded in a plasma — the hot, charged gas that makes up 99 percent of the visible universe — converge, break apart and explosively reconnect. This process takes place in thin sheets in which electric current is strongly concentrated.

According to conventional theory, these sheets can be highly elongated and severely constrain the velocity of the magnetic field lines that join and split apart, making fast reconnection impossible. However, observation shows that rapid reconnection does exist, directly contradicting theoretical predictions.

Detailed theory for rapid reconnection

Now, physicists at PPPL and Princeton University have presented a detailed theory for the mechanism that leads to fast reconnection. Their paper, published in the journal Physics of Plasmas in October, focuses on a phenomenon called “plasmoid instability” to explain the onset of the rapid reconnection process. Support for this research comes from the National Science Foundation and the DOE Office of Science.

Plasmoid instability, which breaks up plasma current sheets into small magnetic islands called plasmoids, has generated considerable interest in recent years as a possible mechanism for fast reconnection. However, correct identification of the properties of the instability has been elusive.

Luca Comisson, PPPL
Luca Comisso, lead author of the study. Photo courtesy of PPPL.

The Physics of Plasmas paper addresses this crucial issue. It presents “a quantitative theory for the development of the plasmoid instability in plasma current sheets that can evolve in time” said Luca Comisso, lead author of the study. Co-authors are Manasvi Lingam and Yi-Min Huang of PPPL and Princeton, and Amitava Bhattacharjee, head of the Theory Department at PPPL and Princeton professor of astrophysical sciences.

Pierre de Fermat’s principle

The paper describes how the plasmoid instability begins in a slow linear phase that goes through a period of quiescence before accelerating into an explosive phase that triggers a dramatic increase in the speed of magnetic reconnection. To determine the most important features of this instability, the researchers adapted a variant of the 17th century “principle of least time” originated by the mathematician Pierre de Fermat.

Use of this principle enabled the researchers to derive equations for the duration of the linear phase, and for computing the growth rate and number of plasmoids created. Hence, this least-time approach led to a quantitative formula for the onset time of fast magnetic reconnection and the physics behind it.

The paper also produced a surprise. The authors found that such relationships do not reflect traditional power laws, in which one quantity varies as a power of another. “It is common in all realms of science to seek the existence of power laws,” the researchers wrote. “In contrast, we find that the scaling relations of the plasmoid instability are not true power laws – a result that has never been derived or predicted before.”

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by Princeton University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract here: Comisso, L.; Lingam, M.; Huang, Y.-M.; Bhattacharjee, A. General theory of the plasmoid instability. Physics of Plasmas 23, 2016. DOI: 10.1063/1.4964481

 

 

 

 

Major next steps proposed for fusion energy based on the spherical tokamak design (Nuclear Fusion)

Test cell of the NSTX-U with tokamak in the center (Credit: Princeton Plasma Physics Laboratory)
Test cell of the NSTX-U with tokamak in the center (Credit: Princeton Plasma Physics Laboratory)

By John Greenwald, Princeton Plasma Physics Laboratory

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility — or “bottle” — that will provide the next steps in the development of fusion reactors. Leading candidates include spherical tokamaks, compact machines that are shaped like cored apples, compared with the doughnut-like shape of conventional tokamaks.  The spherical design produces high-pressure plasmas — essential ingredients for fusion reactions — with relatively low and cost-effective magnetic fields.

A possible next step is a device called a Fusion Nuclear Science Facility (FNSF) that could develop the materials and components for a fusion reactor. Such a device could precede a pilot plant that would demonstrate the ability to produce net energy.

Spherical tokamaks as excellent models

Spherical tokamaks could be excellent models for an FNSF, according to a paper published online in the journal Nuclear Fusion on August 16. The two most advanced spherical tokamaks in the world today are the recently completed National Spherical Torus Experiment-Upgrade (NSTX-U) at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), which is managed by Princeton University, and the Mega Ampere Spherical Tokamak (MAST), which is being upgraded at the Culham Center for Fusion Energy in the United Kingdom.

“We are opening up new options for future plants,” said Jonathan Menard, program director for the NSTX-U and lead author of the paper, which discusses the fitness of both spherical tokamaks as possible models. Support for this work comes from the DOE Office of Science.

Jonathan Menard, program director for the NSTX-U and lead author of the paper (Credit: Elle Stark, PPPL)
Jonathan Menard, program director for the NSTX-U and lead author of the paper (Credit: Elle Stark, PPPL)

The 43-page paper considers the spherical design for a combined next-step bottle: an FNSF that could become a pilot plant and serve as a forerunner for a commercial fusion reactor. Such a facility could provide a pathway leading from ITER, the international tokamak under construction in France to demonstrate the feasibility of fusion power, to a commercial fusion power plant.

A key issue for this bottle is the size of the hole in the center of the tokamak that holds and shapes the plasma. In spherical tokamaks, this hole can be half the size of the hole in conventional tokamaks. These differences, reflected in the shape of the magnetic field that confines the superhot plasma, have a profound effect on how the plasma behaves.

Designs for the Fusion Nuclear Science Facility

First up for a next-step device would be the FNSF. It would test the materials that must face and withstand the neutron bombardment that fusion reactions produce, while also generating a sufficient amount of its own fusion fuel. According to the paper, recent studies have for the first time identified integrated designs that would be up to the task.

These integrated capabilities include:

  • A blanket system able to breed tritium, a rare isotope — or form — of hydrogen that fuses with deuterium, another isotope of the atom, to generate the fusion reactions.  The spherical design could breed approximately one isotope of tritium for each isotope consumed in the reaction, producing tritium self-sufficiency.
  • A lengthy configuration of the magnetic field that vents exhaust heat from the tokamak. This configuration, called a “divertor,” would reduce the amount of heat that strikes and could damage the interior wall of the tokamak.
  • A vertical maintenance scheme in which the central magnet and the blanket structures that breed tritium can be removed independently from the tokamak for installation, maintenance, and repair. Maintenance of these complex nuclear facilities represents a significant design challenge. Once a tokamak operates with fusion fuel, this maintenance must be done with remote-handling robots; the new paper describes how this can be accomplished.

For pilot plant use, superconducting coils that operate at high temperature would replace the copper coils in the FNSF to reduce power loss. The plant would generate a small amount of net electricity in a facility that would be as compact as possible and could more easily scale to a commercial fusion power station.

High-temperature superconductors

High-temperature superconductors could have both positive and negative effects. While they would reduce power loss, they would require additional shielding to protect the magnets from heating and radiation damage. This would make the machine larger and less compact.

Recent advances in high-temperature superconductors could help overcome this problem. The advances enable higher magnetic fields, using much thinner magnets than are presently achievable, leading to reduction in the refrigeration power needed to cool the magnets. Such superconducting magnets open the possibility that all FNSF and associated pilot plants based on the spherical tokamak design could help minimize the mass and cost of the main confinement magnets.

For now, the increased power of the NSTX-U and the soon-to-be-completed MAST facility moves them closer to the capability of a commercial plant that will create safe, clean and virtually limitless energy. “NSTX-U and MAST-U will push the physics frontier, expand our knowledge of high temperature plasmas, and, if successful, lay the scientific foundation for fusion development paths based on more compact designs,” said PPPL Director Stewart Prager.

Twice the power and five times the pulse length

The NSTX-U has twice the power and five times the pulse length of its predecessor and will explore how plasma confinement and sustainment are influenced by higher plasma pressure in the spherical geometry. The MAST upgrade will have comparable prowess and will explore a new, state-of-the art method for exhausting plasmas that are hotter than the core of the sun without damaging the machine.

“The main reason we research spherical tokamaks is to find a way to produce fusion at much less cost than conventional tokamaks require,” said Ian Chapman, the newly appointed chief executive of the United Kingdom Atomic Energy Authority and leader of the UK’s magnetic confinement fusion research program at the Culham Science Center.

The ability of these machines to create high plasma performance within their compact geometries demonstrates their fitness as possible models for next-step fusion facilities. The wide range of considerations, calculations and figures detailed in this study strongly support the concept of a combined FNSF and pilot plant based on the spherical design. The NSTX-U and MAST-U devices must now successfully prototype the necessary high-performance scenarios.

Read the abstract

J.E. Menard, T. Brown, L. El-Guebaly, M. Boyer, J. Canik, B. Colling, R. Raman, Z. Wang, Y. Zhai,P. Buxton, B. Covele, C. D’Angelo, A. Davis, S. Gerhardt, M. Gryaznevich, M. Harb, T.C. Hender,S. Kaye, D. Kingham, M. Kotschenreuther, S. Mahajan, R. Maingi, E. Marriott, E.T. Meier, L. Mynsberge, C. Neumeyer, M. Ono, J.-K. Park, S.A. Sabbagh, V. Soukhanovskii, P. Valanju and R. Woolley. Fusion nuclear science facilities and pilot plants based on the spherical tokamak. Nucl. Fusion 56 (2016) — Published 16 August 2016.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Compressing turbulence to improve inertial confinement fusion experiments (PRL)

Compression of a turbulent plasma. Credit: Seth Davidovits
Compression of a turbulent plasma. Credit: Seth Davidovits

By John Greenwald, Princeton Plasma Physics Laboratory

Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Department of Astrophysical Sciences at Princeton University indicate that turbulent swirls of plasma could benefit one of the two major branches of such research.   The editors of Physical Review Letters highlighted these findings — a distinction given to one of every six papers per issue — when they published the results last week on March 11.

Lead author Seth Davidovits, a Princeton University graduate student, and Professor of Astrophysical Sciences Nathaniel Fisch, his thesis adviser and Associate Director for Academic Affairs at PPPL, produced the findings. They modeled the compression of fluid turbulence, showing effects that suggested a surprising positive impact of turbulence on inertial confinement fusion (ICF) experiments.

Stimulating this work were experiments conducted by Professor Yitzhak Maron at the Weizmann Institute of Science in Israel. Those experiments, on a Z-pinch inertial confinement machine, showed turbulence that contained a surprising amount of energy, which caught Fisch’s attention during a recent sabbatical at Weizmann.

In a Z-pinch and other inertial confinement (ICF) machines, plasma is compressed to create fusion energy. The method contrasts with the research done at PPPL and other laboratories, which controls plasma with magnetic fields and heats it to fusion temperatures in doughnut-shaped devices called tokamaks. The largest Z-pinch device in the United States is at the DOE’s Sandia National Laboratory. Other inertial confinement approaches are pursued at, among other places, the DOE’s Lawrence Livermore National Laboratory.

Present ICF approaches use compression to steadily heat the plasma. Methods range from squeezing plasma with magnetic fields at Sandia to firing lasers at capsules filled with plasma at Livermore’s National Ignition Facility. The presence of turbulence in the plasma is widely thought to increase the difficulty of achieving fusion.

But there could be advantages to turbulence if handled properly, the authors point out, since energy contained in turbulence does not radiate away. This compares with hotter plasmas in which heat radiates away quickly, making fusion harder to achieve. By storing the energy of the compression in turbulence rather than temperature, the authors suppress the energy lost to radiation during the compression.

The turbulent energy also does not immediately lead to fusion, which requires high temperature. This means a mechanism is needed to change the turbulence into the temperature required for fusion once the plasma has been compressed.

Davidovits used a software code called Dedalus to show that turbulent energy is increased during the compression, but then suddenly transformed into heat. As external forces in his simulation compress the turbulence to increase the energy stored within it, they also gradually raise the temperature and viscosity of the plasma. The viscosity, which describes how “thick” or resistant to flow a fluid is, acts to slow the turbulence and convert its energy to temperature. The viscosity started small so that the turbulence was initially unhindered. The rapid compression then kept the viscosity growing until it suddenly catalyzed the transfer of energy from the turbulence to the temperature.

In an experiment, this process would create the conditions for nuclear fusion in a plasma composed of the hydrogen isotopes deuterium and tritium. “This suggests a fundamentally different design for compression-based fusion experiments,” Davidovits said, “and a new paradigm for the inertial technique of producing fusion energy.”

He warns, however, that the simulation includes caveats that could diminish the findings. For example, the model doesn’t consider any possible interaction between the plasma and the containing capsule, and highly energetic turbulence might mix parts of the capsule into the plasma and contaminate the fusion fuel.

Nonetheless, the authors call the rapid transfer of turbulent energy into temperature during ICF experiments a “tantalizing” prospect that could benefit such research. And they note that their findings could lead to new understanding of the evolution of the relationship between the pressure, volume and temperature of a gas that is substantially turbulent. Determining this will be quite challenging, they say, “but the understanding will be important not only for the new fusion approach, but also for many situations involving the behavior of low viscosity compressible fluids and gases.”

This research was initiated through a grant by the Defense Threat Reduction Agency, a unit of the U.S. Department of Defense, and has been supported also by the DOE’s National Nuclear Security Administration through a consortium with Cornell University. Recently, the National Science Foundation and the Israel Binational Science Foundation combined funding opportunities to ensure further experiments at Weizmann on this topic and continued collaboration with the Princeton researchers.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract or paper here.

S. Davidovits, N. Fisch, Sudden Viscous Dissipation of Compressing Turbulence. Phys. Rev. Lett. 116, 105004 – Published 11 March 2016.

This work was supported by DOE through Contracts No. DE-AC02-09CH1-1466 and NNSA 67350-9960 (Prime No. DOE DE-NA0001836), by DTRA HDTRA1-11-1-0037, and by NSF Contract No. PHY-1506122.

 

PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid (Nuclear Fusion)

Francesca Poli
PPPL Scientist Francesca Poli. Photo Credit: Elle Starkman / PPPL Office of Communications. PPPL, located on Princeton University’s Forrestal Campus and managed by the University, is devoted to developing practical solutions for the creation of sustainable energy from fusion and to creating new knowledge about the physics of ultra-hot, charged gases known as plasmas.

By Raphael Rosen, PPPL Office of Communications

Scientists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid.

The computer simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in the journal Nuclear Fusion. The research was supported by the DOE Office of Science.

In traditional donut-shaped tokamaks, a large solenoid runs down the center of the reactor. By varying the electrical current in the solenoid scientists induce a current in the plasma. This current starts up the plasma and creates a second magnetic field that completes the forces that hold the hot, charged gas together.

But spherical tokamaks, a compact variety of fusion reactor that produces high plasma pressure with relatively low magnetic fields, have little room for solenoids. Spherical tokamaks look like cored apples and have a smaller central hole for the solenoid than conventional tokamaks do. Physicists, therefore, have been trying to find alternative methods for producing the current that starts the plasma and completes the magnetic field in spherical tokamaks.

One such method is known as coaxial helicity injection (CHI). During CHI, researchers switch on an electric coil that runs beneath the tokamak. Above this coil is a gap that opens into the tokamak’s vacuum vessel and circles the tokamak’s floor. The switched-on electrical current produces a magnetic field that connects metal plates on either side of the gap.

Researchers next puff gas through the gap and discharge a spark across the two plates. This process causes magnetic reconnection — the process by which the magnetic fields snap apart and reconnect. This reconnection creates a magnetic bubble that fills the tokamak and produces the vital electric current that starts up the plasma and completes the magnetic field.

This current must be nurtured and fed. According to lead author Francesca Poli, the new computer simulations show that the current can best be sustained by injecting high-harmonic radio-frequency waves (HHFWs) and neutral beams into the plasma.

HHFW’s are radio-frequency waves that can heat both electrons and ions. The neutral beams, which consist of streams of hydrogen atoms, become charged when they enter the plasma and interact with the ions. The combination of the HHFWs and neutral beams increases the current from 300 kiloamps to 1 mega amp.

But neither HHFWs nor neutral beams can be used at the start of the process, when the plasma is relatively cool and not very dense. Poli found that HHFWs would be more effective if the plasma were first heated by electron cyclotron waves, which transfer energy to the electrons that circle the magnetic field lines.

“With no electron cyclotron waves you would have to pump in four megawatts of HHFW power to create 400 kiloamps of current,” she said. “With these waves you can get the same amount of current by pumping in only one megawatt of power.

“All of this is important because it’s hard to control the plasma at the start-up,” she added. “So the faster you can control the plasma, the better.”

PPPL is managed by Princeton University for the U.S. Department of Energy’s Office of Science.

Read the abstract.

F.M. Poli, R.G. Andre, N. Bertelli, S.P. Gerhardt, D. Mueller and G. Taylor. “Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade.” Nuclear Fusion. Published October 30, 2015. DOI: 10.1088/0029-5515/55/12/123011

Using powerful computers, physicists uncover mechanism that stabilizes plasma (Physical Review Letters)

Virtual plasma
A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once. Image Credit: Stephen Jardin, PPPL.

By Raphael Rosen, Princeton Plasma Physics Laboratory Communications

A team of physicists led by Stephen Jardin of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a “sawtooth cycle” and can cause instabilities within the plasma’s core. The results have been published online in Physical Review Letters. The research was supported by the DOE Office of Science.

The team, which included scientists from General Atomics and the Max Planck Institute for Plasma Physics, performed calculations on the Edison computer at the National Energy Research Scientific Computing Center, a division of the Lawrence Berkeley National Laboratory. Using M3D-C1, a program they developed that creates three-dimensional simulations of fusion plasmas, the team found that under certain conditions a helix-shaped whirlpool of plasma forms around the center of the tokamak. The swirling plasma acts like a dynamo — a moving fluid that creates electric and magnetic fields. Together these fields prevent the current flowing through plasma from peaking and crashing.

The researchers found two specific conditions under which the plasma behaves like a dynamo. First, the magnetic lines that circle the plasma must rotate exactly once, both the long way and the short way around the doughnut-shaped configuration, so an electron or ion following a magnetic field line would end up exactly where it began. Second, the pressure in the center of the plasma must be significantly greater than at the edge, creating a gradient between the two sections. This gradient combines with the rotating magnetic field lines to create spinning rolls of plasma that swirl around the tokamak and gives rise to the dynamo that maintains equilibrium and produces stability.

This dynamo behavior arises only under certain conditions. Both the electrical current running through the plasma and the pressure that the plasma’s electrons and ions exert on their neighbors must be in a range that is “not too large and not too small,” said Jardin. In addition, the speed at which the conditions for the fusion reaction are established must be “not too fast and not too slow.”

Jardin stressed that once a range of conditions like pressure and current are set, the dynamo phenomenon occurs all by itself. “We don’t have to do anything else from the outside,” he noted. “It’s something like when you drain your bathtub and a whirlpool forms over the drain by itself. But because a plasma is more complicated than water, the whirlpool that forms in the tokamak needs to also generate the voltage to sustain itself.”

During the simulations the scientists were able to virtually add new diagnostics, or probes, to the computer code. “These diagnostics were able to measure the helical velocity fields, electric potential, and magnetic fields to clarify how the dynamo forms and persists,” said Jardin. The persistence produces the “voltage in the center of the discharge that keeps the plasma current from peaking.”

Physicists have indirectly observed what they believe to be the dynamo behavior on the DIII-D National Fusion Facility that General Atomics operates for the Department of Energy in San Diego and on the ASDEX Upgrade in Garching, Germany. They hope to learn to create these conditions on demand, especially in ITER, the huge multinational fusion machine being constructed in France to demonstrate the practicality of fusion power. “Now that we understand it better, we think that computer simulations will show us under what conditions this will occur in ITER,” said Jardin. “That will be the focus of our research in the near future.”

Learning how to create these conditions will be particularly important for ITER, which will produce helium nuclei that could amplify the sawtooth disruptions. If large enough, these disruptions could cause other instabilities that could halt the fusion process. Preventing the cycle from starting would therefore be highly beneficial for the ITER experiment.

Read the abstract.

S.C. Jardin, N. Ferraro, and I. Krebs. “Self-Organized Stationary States of Tokamaks.” Physical Review Letters. Published November 17, 2015. DOI: http://dx.doi.org/10.1103/PhysRevLett.115.215001

This article is courtesy of the Princeton Plasma Physics Laboratory.

PPPL physicists propose new plasma-based method to treat radioactive waste (Journal of Hazardous Materials)

Caption: Securing a shipment of mixed, low-level waste from Hanford for treatment and disposal. Credit: U.S. Department of Energy
Caption: Securing a shipment of mixed, low-level waste from Hanford for treatment and disposal. Credit: U.S. Department of Energy

By Raphael Rosen, Princeton Plasma Physics Laboratory Communications

Physicists at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) are proposing a new way to process nuclear waste that uses a plasma-based centrifuge. Known as plasma mass filtering, the new mass separation techniques would supplement chemical techniques. It is hoped that this combined approach would reduce both the cost of nuclear waste disposal and the amount of byproducts produced during the process. This work was supported by PPPL’s Laboratory Directed Research and Development Program.

“The safe disposal of nuclear waste is a colossal problem,” said Renaud Gueroult, staff physicist at PPPL and lead author of the paper that appeared in the Journal of Hazardous Materials in October. “One solution might be to supplement existing chemical separation techniques with plasma separation techniques, which could be economically attractive, ideally leading to a reevaluation of how nuclear waste is processed.”

The immediate motivation for safe disposal is the radioactive waste stored currently at the Hanford Site, a facility in Washington State that produced plutonium for nuclear weapons during the Cold War. The volume of this waste originally totaled 54 million gallons and was stored in 177 underground tanks.

In 2000, Hanford engineers began building machinery that would encase the radioactive waste in glass. The method, known as “vitrification,” had been used at another Cold War-era nuclear production facility since 1996. A multibillion-dollar vitrification plant is currently under construction at the Hanford site.

To reduce the cost of high-level waste vitrification and disposal, it may be advantageous to reduce the number of high-level glass canisters by packing more waste into each glass canister. To reduce the volume to be vitrified, it would be advantageous to separate the nonradioactive waste, like aluminum and iron, out of the waste, leaving less waste to be vitrified. However, in its 2014 report, the DOE Task Force on Technology Development for Environmental Management argued that, “without the development of new technology, it is not clear that the cleanup can be completed satisfactorily or at any reasonable cost.”

The high-throughput, plasma-based, mass separation techniques advanced at PPPL offer the possibility of reducing the volume of waste that needs to be immobilized in glass. “The interesting thing about our ideas on mass separation is that it is a form of magnetic confinement, so it fits well within the Laboratory’s culture,” said physicist Nat Fisch, co-author of the paper and director of the Princeton University Program in Plasma Physics. “To be more precise, it is ‘differential magnetic confinement’ in that some species are confined while others are lost quickly, which is what makes it a high-throughput mass filter.”

How would a plasma-based mass filter system work? The method begins by atomizing and ionizing the hazardous waste and injecting it into the rotating filter so the individual elements can be influenced by electric and magnetic fields. The filter then separates the lighter elements from the heavier ones by using centrifugal and magnetic forces. The lighter elements are typically less radioactive than the heavier ones and often do not need to be vitrified. Processing of the high-level waste therefore would need fewer high-level glass canisters overall, while the less radioactive material could be immobilized in less costly wasteform (e.g., concrete, bitumen).

The new technique would also be more widely applicable than traditional chemical-based methods since it would depend less on the nuclear waste’s chemical composition. While “the waste’s composition would influence the performance of the plasma mass filter in some ways, the effect would most likely be less than that associated with chemical techniques,” said Gueroult.

Gueroult points out why savings by plasma techniques can be important. “For only about $10 a kilogram in energy cost, solid waste can be ionized. In its ionized form, the waste can then be separated into heavy and light components. Because the waste is atomized, the separation proceeds only on the basis of atomic mass, without regard to the chemistry. Since the total cost of chemical-based techniques can be $2,000 per kilogram of the vitrified waste, as explained in the Journal of Hazardous Materials paper, it stands to reason that even if several plasma-based steps are needed to achieve pure enough separation, there is in principle plenty of room to cut the overall costs. That is the point of our recent paper. It is also why we are excited about our plasma-based methods.”

Fisch notes that “our original ideas grew out of the thesis of Abe Fetterman, who began by considering centrifugal mirror confinement for nuclear fusion, but then realized the potential for mass separation. Now the key role on this project is being played by Renaud, who has developed the concept substantially further.”

According to Fisch, the current developments are a variation and refinement of a plasma-based mass separation system first advanced by a private company called Archimedes Technology Group. That company, started by the late Dr. Tihiro Ohkawa, a fusion pioneer, raised private capital to advance a plasma-based centrifuge concept to clean up the legacy waste at Hanford, but ceased operation in 2006 after failing to receive federal funding.

Now an updated understanding of the complexity of the Hanford problem, combined with an increased appreciation of new ideas, has led to renewed federal interest in waste-treatment solutions. Completion of the main waste processing operations, which was in 2002 projected for 2028, has slipped by 20 years over the last 13 years, and the total cleanup cost is now estimated by the Department of Energy to be greater than 250 billion dollars, according to the DOE Office of Inspector General, Office of Audits and Inspections. DOE, which has the responsibility of cleaning up the legacy nuclear waste at Hanford and other sites, conducted a Basic Research Needs Workshop on nuclear waste cleanup in July that both Fisch and Gueroult attended. The report of that workshop, which is expected to highlight new approaches to the cleanup problem, is due out this fall.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract.

Renaud Gueroult, David T. Hobbs, Nathaniel J. Fisch. “Plasma filtering techniques for nuclear waste remediation.” Journal of Hazardous Materials, published October 2015. doi:10.1016/j.jhazmat.2015.04.058.

Identifying new sources of turbulence in spherical tokamaks (Physics of Plasmas)

By John Greenwald, Princeton Plasma Physics Laboratory Communications

Turbulence 1
Computer simulation of turbulence in a model of the NSTX-U, a spherical tokamak fusion facility at the U.S. Dept. of Energy’s Princeton Plasma Physics Laboratory. Credit: Eliot Feibush

For fusion reactions to take place efficiently, the atomic nuclei that fuse together in plasma must be kept sufficiently hot. But turbulence in the plasma that flows in facilities called tokamaks can cause heat to leak from the core of the plasma to its outer edge, causing reactions to fizzle out.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have for the first time modeled previously unsuspected sources of turbulence in spherical tokamaks, an alternative design for producing fusion energy. The findings, published online in October in Physics of Plasmas, could influence the development of future fusion facilities. This work was supported by the DOE Office of Science.

Spherical tokamaks, like the recently completed National Spherical Torus Experiment-Upgrade (NSTX-U) at PPPL, are shaped like cored apples compared with the mushroom-like design of conventional tokamaks that are more widely used. The cored-apple shape provides some distinct characteristics for the behavior of the plasma inside.

The paper, with PPPL principal research physicist Weixing Wang as lead author, identifies two important new sources of turbulence based on data from experiments on the National Spherical Torus Experiment prior to its upgrade. The discoveries were made by using state-of-the-art large-scale computer simulations. These sources are:

  • Instabilities caused by plasma that flows faster in the center of the fusion facility than toward the edge when rotating strongly in L-mode — or low confinement — regimes. These instabilities, called “Kelvin-Helmholtz modes” after physicists Baron Kelvin and Hermann von Helmholtz, act like wind that stirs up waves as it blows over water and are for the first time found to be relevant for realistic fusion experiments. Such non-uniform plasma flows have been known to play favorable roles in fusion plasmas in conventional and spherical tokamaks. The new results from this study suggest that we may also need to keep these flows within an optimized level.
  • Trapped electrons that bounce between two points in a section of the tokamak instead of swirling all the way around the facility. These electrons were shown to cause significant leakage of heat in H-mode — or high-confinement — regimes by driving a specific instability when they collide frequently. This type of instability is believed to play little role in conventional tokamaks but can provide a robust source of plasma turbulence in spherical tokamaks.

Most interestingly, the model predicts a range of trapped electron collisions in spherical tokamaks that can be turbulence-free, thus improving the plasma confinement. Such favorable plasmas could possibly be achieved by future advanced spherical tokamaks operating at high temperature.

Findings of the new model can be tested on the NSTX-U and will help guide experiments to identify non-traditional sources of turbulence in the spherical facility. Results of this research can shed light on the physics behind key obstacles to plasma confinement in spherical facilities and on ways to overcome them in future machines.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by Princeton University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract:

Weixing X. Wang, Stephane Ethier, Yang Ren, Stanley Kaye, Jin Chen, Edward Startsev, Zhixin Lu, and Zhengqian Li. “Identification of new turbulence contributions to plasma transport and confinement in spherical tokamak regime.” Physics of Plasmas, published October 2015. doi:10.1063/1.4933216.

Scientists propose an explanation for electron heat loss in fusion plasmas (Physical Review Letters)

By Raphael Rosen, Princeton Plasma Physics Laboratory

Elena Belova
PPPL Scientist Elena Belova
Photo Credit: Elle Starkman, PPPL

Creating controlled fusion energy entails many challenges, but one of the most basic is heating plasma – hot gas composed of electrons and charged atoms – to extremely high temperatures and then maintaining those temperatures. Now scientist Elena Belova of the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and a team of collaborators have proposed an explanation for why the hot plasma within fusion facilities called tokamaks sometimes fails to reach the required temperature, even as researchers pump beams of fast-moving neutral atoms into the plasma in an effort to make it hotter.

The results, published in June in Physical Review Letters, could lead to improved control of temperature in future fusion devices, including ITER, the international fusion facility under construction in France to demonstrate the feasibility of fusion power. This work was supported by the DOE Office of Science (Office of Fusion Energy Sciences).

The researchers focused on the puzzling tendency of electron heat to leak from the core of the plasma to the plasma’s edge. “One of the largest remaining mysteries in plasma physics is how electron heat is transported out of plasma,” said Jon Menard, program director for PPPL’s major fusion experiment, the National Spherical Tokamak Experiment-Upgrade (NSTX-U), which is completing a $94 million upgrade.

Belova hit upon a possible answer while performing 3D simulations of past NSTX plasmas on computers at the National Energy Research Scientific Computing Center (NERSC), in Oakland, California. She saw that two kinds of waves found in fusion plasmas appear to form a chain that transfers the neutral-beam energy from the core of the plasma to the edge, where the heat dissipates. While physicists have long known that the coupling between the two kinds of waves – known as compressional Alfvén waves and kinetic Alfvén waves (KAWs) – can lead to energy dissipation in plasmas, Belova’s results were the first to demonstrate the process for beam-excited compressional Alfvén eigenmodes (CAEs) in tokamaks.

Her simulations showed that when researchers try to heat the plasma by injecting beams of energetic deuterium, a form of hydrogen, the beams excite CAE waves in the plasma’s core. Those waves then resonate with KAW waves, which occur primarily at the plasma’s edge. As a result, the energy is transported from the injection site deep within the plasma to the plasma’s edge.

“Originally, when scientists found that the electron temperature wouldn’t go up with increased beam power, everybody assumed that the electrons were getting heated at the plasma’s center and then were somehow losing that heat,” Belova said. “Our explanation is different. We propose that part of the beam energy goes into CAEs and then to KAWs. The energy then dissipates at the plasma’s edge.”

The simulations provided a broad perspective. “In simulations you can look everywhere in a plasma,” Belova said. “In the experiments, on the other hand, you are very limited in what and where you can measure inside the hot plasma.”

Belova’s findings reflect the growing collaboration between theoretical and experimental research at the Laboratory. “Her results uncover a novel loss mechanism for electron energy that could be important for NSTX-U plasmas,” said Amitava Bhattacharjee, head of the Theory Department at PPPL.

Belova plans to run more simulations to determine whether the mechanism she identified is the primary process that modifies the electron heating profile. She will also look for ways in which physicists can avoid this wave-induced change in the profile. In the meantime, she is driven by her desire to learn more physics. “We want to understand how these waves are excited by the beam ions,” she said, “and how to avoid them in the experiments.”

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Read the abstract.

Belova, E.V., N.N. Gorelenkov, E.D. Fredrickson, K. Tritz and N. A. Crocker. “Coupling of Neutral-Beam-Driven Compressional Alfvén Eigenmodes to Kinetic Alfvén Waves in NSTX Tokamak and Energy Channeling.” Physical Review Letters. Published June 29, 2015. DOI: 10.1103/PhysRevLett.115.015001

 

X marks the spot: Researchers confirm novel method for controlling plasma rotation to improve fusion performance (Physical Review Letters)

Representative plasma geometries, with the X-point location circled in red. (Reprinted from T. Stoltzfus-Dueck et al., Phys. Rev. Lett. 114, 245001, 2015. Copyright 2015 by the American Physical Society.)
Representative plasma geometries, with the X-point location circled in red. (Reprinted from T. Stoltzfus-Dueck et al., Phys. Rev. Lett. 114, 245001, 2015. Copyright 2015 by the American Physical Society.)

By Raphael Rosen, Princeton Plasma Physics Laboratory

Rotation is key to the performance of salad spinners, toy tops, and centrifuges, but recent research suggests a way to harness rotation for the future of mankind’s energy supply. In papers published in Physics of Plasmas in May and Physical Review Letters this month, Timothy Stoltzfus-Dueck, a physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), demonstrated a novel method that scientists can use to manipulate the intrinsic – or self-generated – rotation of hot, charged plasma gas within fusion facilities called tokamaks. This work was supported by the DOE Office of Science.

Such a method could prove important for future facilities like ITER, the huge international tokamak under construction in France that will demonstrate the feasibility of fusion as a source of energy for generating electricity. ITER’s massive size will make it difficult for the facility to provide sufficient rotation through external means.

Rotation is essential to the performance of all tokamaks. Rotation can stabilize instabilities in plasma, and sheared rotation – the difference in velocities between two bands of rotating plasma – can suppress plasma turbulence, making it possible to maintain the gas’s high temperature with less power and reduced operating costs.

Today’s tokamaks produce rotation mainly by heating the plasma with neutral beams, which cause it to spin. In intrinsic rotation, however, rotating particles that leak from the edge of the plasma accelerate the plasma in the opposite direction, just as the expulsion of propellant drives a rocket forward.

Stoltzfus-Dueck and his team influenced intrinsic rotation by moving the so-called X-point – the dividing point between magnetically confined plasma and plasma that has leaked from confinement – on the Tokamak à Configuration Variable (TCV) in Lausanne, Switzerland. The experiments marked the first time that researchers had moved the X-point horizontally to study plasma rotation. The results confirmed calculations that Stoltzfus-Dueck had published in a 2012 paper showing that moving the X-point would cause the confined plasma to either halt its intrinsic rotation or begin rotating in the opposite direction. “The edge rotation behaved just as the theory predicted,” said Stoltzfus-Dueck.

A surprise also lay in store: Moving the X-point not only altered the edge rotation, but modified rotation within the superhot core of the plasma where fusion reactions occur. The results indicate that scientists can use the X-point as a “control knob” to adjust the inner workings of fusion plasmas, much like changing the settings on iTunes or a stereo lets one explore the behavior of music. This discovery gives fusion researchers a tool to access different intrinsic rotation profiles and learn more about intrinsic rotation itself and its effect on confinement.

The overall findings provided a “perfect example of a success story for theory-experiment collaboration,” said Olivier Sauter, senior scientist at École Polytechnique Fédérale de Lausanne and co-author of the paper.

Along with the practical applications of his research, Stoltzfus-Dueck enjoys the purely intellectual aspect of his work. “It’s just interesting,” he said. “Why do plasmas rotate in the way they do? It’s a puzzle.”

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract.

Stoltzfus-Dueck, A. N. Karpushov, O. Sauter, B. P. Duval, B. Labit, H. Reimerdes, W. A. J. Vijvers, the TCV Team, and Y. Camenen. “X-Point-Position-Dependent Intrinsic Toroidal Rotation in the Edge of the TCV Tokamak.” Physical Review Letters 114, 245001 – Published 17 June 2015.

Giant structures called plasmoids could simplify the design of future tokamaks (Physical Review Letters)

Plasmoid formation in plasma simulation
Left: Plasmoid formation in simulation of NSTX plasma during CHI. Credit: Fatima Ebrahimi, PPPL / Right: Fast-camera image of NSTX plasma shows two discrete plasmoid-like bubble structures. Credit: Nishino-san, Hiroshima University

By Raphael Rosen, Princeton Plasma Physics Laboratory

Researchers at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) have for the first time simulated the formation of structures called “plasmoids” during Coaxial Helicity Injection (CHI), a process that could simplify the design of fusion facilities known as tokamaks. The findings, reported in the journal Physical Review Letters, involve the formation of plasmoids in the hot, charged plasma gas that fuels fusion reactions. These round structures carry current that could eliminate the need for solenoids – large magnetic coils that wind down the center of today’s tokamaks – to initiate the plasma and complete the magnetic field that confines the hot gas.

“Understanding this behavior will help us produce plasmas that undergo fusion reactions indefinitely,” said Fatima Ebrahimi, a physicist at both Princeton University and PPPL, and the paper’s lead author.

Ebrahimi ran a computer simulation that modeled the behavior of plasma and the formation of plasmoids in three dimensions thoughout a tokamak’s vacuum vessel. This marked the first time researchers had modeled plasmoids in conditions that closely mimicked those within an actual tokamak. All previous simulations had modeled only a thin slice of the plasma – a simplified picture that could fail to capture the full range of plasma behavior.

Researchers validated their model by comparing it with fast-camera images of plasma behavior inside the National Spherical Torus Experiment (NSTX), PPPL’s major fusion facility. These images also showed plasmoid-like structures, confirming the simulation and giving the research breakthrough significance, since it revealed the existence of plasmoids in an environment in which they had never been seen before. “These findings are in a whole different league from previous ones,” said Roger Raman, leader for the Coaxial Helicity Injection Research program on NSTX and a coauthor of the paper.

The findings may provide theoretical support for the design of a new kind of tokamak with no need for a large solenoid to complete the magnetic field. Solenoids create magnetic fields when electric current courses through them in relatively short pulses. Today’s conventional tokamaks, which are shaped like a donut, and spherical tokamaks, which are shaped like a cored apple, both employ solenoids. But future tokamaks will need to operate in a constant or steady state for weeks or months at a time. Moreover, the space in which the solenoid fits – the hole in the middle of the doughnut-shaped tokamak – is relatively small and limits the size and strength of the solenoid.

A clear understanding of plasmoid formation could thus lead to a more efficient method of creating and maintaining a plasma through transient Coaxial Helicity Injection. This method, originally developed at the University of Washington, could dispense with a solenoid entirely and would work like this:

  • Researchers first inject open magnetic field lines into the vessel from the bottom of the vacuum chamber. As researchers drive electric current along those magnetic lines, the lines snap closed and form the plasmoids, much like soap bubbles being blown out of a sheet of soapy film.
  • The many plasmoids would then merge to form one giant plasmoid that could fill the vacuum chamber.
  • The magnetic field within this giant plasmoid would induce a current in the plasma to keep the gas tightly in place. “In principle, CHI could fundamentally change how tokamaks are built in the future,” says Raman.

Understanding how the magnetic lines in plasmoids snap closed could also help solar physicists decode the workings of the sun. Huge magnetic lines regularly loop off the surface of the star, bringing the sun’s hot plasma with them. These lines sometimes snap together to form a plasmoid-like mass that can interfere with communications satellites when it collides with the magnetic field that surrounds the Earth.

While Ebrahimi’s findings are promising, she stresses that much more is to come. PPPL’s National Spherical Torus Experiment-Upgrade (NSTX-U) will provide a more powerful platform for studying plasmoids when it begins operating this year, making Ebrahimi’s research “only the beginning of even more exciting work that will be done on PPPL equipment,” she said.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract

Ebrahimi and R. Raman. “Plasmoids Formation During Simulations of Coaxial Helicity Injection in the National Spherical Torus Experiment. Physical Review Letters. Published May 20, 2015. DOI: http://dx.doi.org/10.1103/PhysRevLett.114.205003