A new cosmic survey offers unprecedented view of galaxies

View of the galaxies
A color composite image in the green, red and infrared bands of a patch of the sky known as the COSMOS field, as imaged by the Subaru Telescope in Hawaii. The galaxies are seen at such large distances that the light from them has taken billions of years to reach Earth. The light from the faintest galaxies in this image was emitted when the universe was less than 10 percent of its present age. Click here to pan around the image. (Credit: Princeton University/HSC Project)

By the Office of the Dean for Research

The universe has come into sharper focus with the release this week of new images from one of the largest telescopes in the world. A multinational collaboration led by the National Astronomical Observatory of Japan that includes Princeton University scientists has published a “cosmic census” of a large swath of the night sky containing roughly 100 million stars and galaxies, including some of the most distant objects in the universe. These high-quality images allow an unprecedented view into the nature and evolution of galaxies and dark matter.

The images and accompanying data were collected using a digital optical-imaging camera on the Subaru Telescope, located at the Mauna Kea Observatory in Hawaii. The camera, known as Hyper Suprime-Cam, is mounted directly in the optical path, at the “prime focus,” of the Subaru Telescope. A single image from the camera captures an amount of sky equal to the area of about nine full moons.

The project, known as the Hyper Suprime-Cam Subaru Strategic Program, is led by the National Astronomical Observatory of Japan (NAOJ) in collaboration with the Kavli Institute for the Physics and Mathematics of the Universe in Japan, the Academia Sinica Institute of Astronomy and Astrophysics in Taiwan, and Princeton University.

The release includes data from the first one-and-a-half years of the project, consisting of 61.5 nights of observations beginning in 2014. The project will take 300 nights over five to six years.

The data will allow researchers to look for previously undiscovered galaxies and to search for dark matter, which is matter that neither emits nor absorbs light but which can be detected via its effects on gravity. A 2015 study using Hyper Suprime-Cam surveyed 2.3 square degrees of sky and found gravitational signatures of nine clumps of dark matter, each weighing as much as a galaxy cluster (Miyazaki et al., 2015). The current data release covers about 50 times more sky than was used in that study, showing the potential of these data to reveal the statistical properties of dark matter.

The survey consists of three layers: a Wide survey that will eventually cover an area equal to 7000 full moons, or 1400 square degrees; a Deep survey that will look farther into the universe and encompass 26 square degrees; and an UltraDeep survey that will cover 3.5 square degrees and penetrate deep into space, allowing observations of some of the most distant galaxies in the universe. The surveys use optical and near infrared wavelengths in five broad wavelength bands (green, red, infrared, z, and y) and four narrow-band filters. In the multi-band images, the images are extremely sharp, with star images only 0.6 to 0.8 arcseconds across. (One arcsecond equals 3600th part of a degree.)

Figure 2: Cluster of galaxies
An image of a massive cluster of galaxies in the Virgo constellation showing numerous strong gravitational lenses. The distance to the central galaxy is 5.3 billion light years, while the lensed galaxies, apparent as the arcs around the cluster, are much more distant. This is a composite image in the green, red, and infrared band, and has a spatial resolution of about 0.6 arcsecond. (Credit: NAOJ/HSC Project)

The ability to capture images from deep in space is made possible by the light-collection power of the Subaru Telescope’s mirror, which has an aperture of 8.2 meters, as well as the image exposure time. The depth into space that one can look is measured in terms of the magnitude, or brightness of objects that can be seen from Earth in a given wavelength band. The depths of the three surveys are characterized by magnitudes in the red band of 26.4, 26.6 and 27.3 in the Wide, Deep and Ultradeep data, respectively. As the survey continues, the Deep and Ultradeep surveys will be able to image fainter objects.

The Hyper Suprime-Cam contains 104 scientific charge-coupled devices (CCDs) for a total of 870 million pixels. The total amount of data taken so far comprises 80 terabytes, which is comparable to the size of about 10 million images by a typical digital camera, and covers 108 square degrees. Because it is difficult to search such a huge dataset with standard tools, NAOJ has developed a dedicated database and interface for ease of access and use of the data.

Figure 3: Interation between galaxies
A color composite image in the green, red and infrared bands of UGC 10214, known as the Tadpole Galaxy in the ELAIS-N1 region. The distance to this galaxy is about 400 million light years. The long tail of stars is due to gravitational interaction between two galaxies. (Credit: NAOJ/HSC Project)

“Since 2014, we have been observing the sky with HSC, which can capture a wide-field image with high resolution,” said Satoshi Miyazaki, the leader of the project and a scientist at NAOJ. “We believe the data release will lead to many exciting astronomical results, from exploring the nature of dark matter and dark energy, as well as asteroids in our own solar system and galaxies in the early universe. The team members are now preparing a number of scientific papers based on these data. We plan to publish them in a special issue of the Publication of Astronomical Society of Japan. Moreover, we hope that interested members of the public will also access the data and enjoy the real universe imaged by the Subaru telescope, one of the largest the world.”

At Princeton, the project is co-led by Michael Strauss and Robert Lupton of the Department of Astrophysical Sciences. “The HSC data are really beautiful,” Strauss said. “Princeton scientists are using these data to explore the nature of merging galaxies, to search for the most distant quasars in the universe, to map the outer reaches of the Milky Way Galaxy, and for many other projects. We are delighted to make these wonderful images available to the world-wide astronomical community.”

Funding for the HSC Project was provided in part by the following grants: Grant-in-Aid for Scientific Research (B) JP15340065; Grant-in-Aid for Scientific Research on Priority Areas JP18072003; and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) entitled, “Uncovering the origin and future of the Universe-ultra-wide-field imaging and spectroscopy reveal the nature of dark matter and dark energy.” Funding was also provided by Princeton University.

This article was adapted from a press release from the National Astronomical Observatory of Japan.

Theorists propose new class of topological metals with exotic electronic properties (Physics Review X)

Band structure spectral function
A new theory explains the behavior of a class of metals with exotic electronic properties. Credit: Muechler et al., Physics Review X

By Tien Nguyen, Department of Chemistry

Researchers at Princeton, Yale, and the University of Zurich have proposed a theory-based approach to characterize a class of metals that possess exotic electronic properties that could help scientists find other, similarly-endowed materials.

Published in the journal Physical Review X, the study described a new class of metals based on their symmetry and a mathematical classification known as a topological number, which is predictive of special electronic properties. Topological materials have drawn intense research interest since the early 2000s culminating in last year’s Nobel Prize in Physics awarded to three physicists, including F. Duncan Haldane, Princeton’s Eugene Higgins Professor of Physics, for theoretical discoveries in this area.

“Topological classification is a very general way of looking at the properties of materials,” said Lukas Muechler, a Princeton graduate student in the laboratory of Roberto Car, Princeton’s Ralph W. *31 Dornte Professor in Chemistry and lead author on the article.

A popular way of explaining this abstract mathematical classification involves breakfast items. In topological classification, donuts and coffee cups are equivalent because they both have one hole and can be smoothly deformed into one another. Meanwhile donuts cannot deform into muffins which makes them inequivalent. The number of holes is an example of a topological invariant that is equal for the donut and coffee cup, but distinguishes between the donut and the muffin.

“The idea is that you don’t really care about the details. As long as two materials have the same topological invariants, we can say they are topologically equivalent,” he said.

Muechler and his colleagues’ interest in the topological classification of this new class of metals was sparked by a peculiar discovery in the neighboring laboratory of Robert Cava, Princeton’s Russell Wellman Moore Professor of Chemistry. While searching for superconductivity in a crystal called tungsten telluride (WTe2), the Cava lab instead found that the material could continually increase its resistance in response to ever stronger magnetic fields – a property that might be used to build a sensor of magnetic fields.

The origin of this property was, however, mysterious. “This material has very interesting properties, but there had been no theory around it,” Muechler said.

The researchers first considered the arrangement of the atoms in the WTe2 crystal. Patterns in the arrangement of atoms are known as symmetries, and they fall into two fundamentally different classes – symmorphic and nonsymmorphic – which lead to profound differences in electronic properties, such as the transport of current in an electromagnetic field.

a) Symmorphic symmetry b) Nonsymmorphic symmetry
a) Symmorphic symmetry b) Nonsymmorphic symmetry Credit: Lukas Muechler

While WTe2 is composed of many layers of atoms stacked upon each other, Car’s team found that a single layer of atoms has a particular nonsymmorphic symmetry, where the atomic arrangement is unchanged overall if it is first rotated and then translated by a fraction of the lattice period (see figure).

Having established the symmetry, the researchers mathematically characterized all possible electronic states having this symmetry, and classified those states that can be smoothly deformed into each other as topologically equivalent, just as a donut can be deformed into a cup. From this classification, they found WTe2 belongs to a new class of metals which they coined nonsymmorphic topological metals. These metals are characterized by a different electron number than the nonsymmorphic metals that have previously been studied.

In nonsymmorphic topological metals, the current-carrying electrons behave like relativistic particles, in other words, as particles traveling at nearly the speed of light. This property is not as susceptible to impurities and defects as ordinary metals, making them attractive candidates for electronic devices.

The abstract topological classification also led the researchers to suggest some explanations for some of the outstanding electronic properties of bulk WTe2, most importantly its perfect compensation, meaning that it has an equal number of holes and electrons. Through theoretical simulations, the researchers found that this property could be achieved in the three-dimensional crystalline stacking of the WTe2 monolayers, which was a surprising result, Muechler said.

“Usually in theory research there isn’t much that’s unexpected, but this just popped out,” he said. “This abstract classification directly led us to explaining this property. In this sense, it’s a very elegant way of looking at this compound and now you can actually understand or design new compounds with similar properties.”

Recent photoemission experiments have also shown that the electrons in WTe2 absorb right-handed photons differently than they would left-handed photons. The theory formulated by the researchers showed that these photoemission experiments on WTe2 can be understood based on the topological properties of this new class of metals.

In future studies, the theorists want to test whether these topological properties are also present in atomically-thin layers of these metals, which could be exfoliated from a larger crystal to make electronic devices. “The study of this phenomena has big implications for the electronics industry, but it’s still in its infant years,” Muechler said.

This work was supported by the U.S. Department of Energy (DE-FG02-05ER46201), the Yale Postdoctoral Prize Fellowship, the National Science Foundation (NSF CAREER DMR-095242 and NSF-MRSEC DMR-0819860), the Office of Naval Research (ONR-N00014-11-1- 0635), the U.S. Department of Defense (MURI-130-6082), the David and Lucile Packard Foundation, the W. M. Keck Foundation, and the Eric and Wendy Schmidt Transformative Technology Fund.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics (Phys. Rev. A)

Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)
Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

By John Greenwald, Princeton Plasma Physics Laboratory Communications

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a theory of plasma waves that can infer these properties in greater detail than in standard approaches. The new research analyzes the plasma surrounding the pulsar by coupling Einstein’s theory of relativity with quantum mechanics, which describes the motion of subatomic particles such as the atomic nuclei — or ions — and electrons in plasma. Supporting this work is the DOE Office of Science.

Quantum field theory

Graduate student Yuan Shi Graduate student Yuan Shi (Photo by Elle Starkman/PPPL Office of Communications)
Graduate student Yuan Shi (Photo by Elle Starkman/PPPL Office of Communications)

The key insight comes from quantum field theory, which describes charged particles that are relativistic, meaning that they travel at near the speed of light. “Quantum theory can describe certain details of the propagation of waves in plasma,” said Yuan Shi, a graduate student at Princeton University in the Department of Astrophysics’ Princeton Program in Plasma Physics, and lead author of a paper published July 29 in the journal Physical Review A.  Understanding the interactions behind the propagation can then reveal the composition of the plasma.

Shi developed the paper with assistance from co-authors Nathaniel Fisch, director of the Princeton Program in Plasma Physics and professor and associate chair of astrophysical sciences at Princeton University, and Hong Qin, a physicist at PPPL and executive dean of the School of Nuclear Science and Technology at the University of Science and Technology of China.  “When I worked out the mathematics they showed me how to apply it,” said Shi. 

In pulsars, relativistic particles in the magnetosphere, which is the magnetized atmosphere surrounding the pulsar, absorb light waves, and this absorption displays peaks. “The question is, what do these peaks mean?” asks Shi. Analysis of the peaks with equations from special relativity and quantum field theory, he found, can determine the density and field strength of the magnetosphere.

Combining physics techniques

The process combines the techniques of high-energy physics, condensed matter physics, and plasma physics.  In high-energy physics, researchers use quantum field theory to describe the interaction of a handful of particles. In condensed matter physics, people use quantum mechanics to describe the states of a large collection of particles. Plasma physics uses model equations to explain the collective movement of millions of particles. The new method utilizes aspects of all three techniques to analyze the plasma waves in pulsars.

The same technique can be used to infer the density of the plasma and strength of the magnetic field created by inertial confinement fusion experiments. Such experiments use lasers to ablate — or vaporize —a target that contains plasma fuel. The ablation then causes an implosion that compresses the fuel into plasma and produces fusion reactions.

Standard formulas give inconsistent answers

Researchers want to know the precise density, temperature and field strength of the plasma that this process creates. Standard mathematical formulas give inconsistent answers when lasers of different color are used to measure the plasma parameters. This is because the extreme density of the plasma gives rise to quantum effects, while the high energy density of the magnetic field gives rise to relativistic effects, says Shi. So formulations that draw upon both fields are needed to reconcile the results.

For Shi, the new technique shows the benefits of combining physics disciplines that don’t often interact. Says he: “Putting fields together gives tremendous power to explain things that we couldn’t understand before.”

Read the abstract

Yuan Shi, Nathaniel J. Fisch, and Hong Qin. Effective-action approach to wave propagation in scalar QED plasmas. Phys. Rev. A 94, 012124 – Published 29 July 2016.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by Princeton University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Unconventional quasiparticles predicted in conventional crystals (Science)

Fermi arcs on the surface of uncoventional materials
Two electronic states known as Fermi arcs, localized on the surface of a material, stem out of the projection of a 3-fold degenerate bulk new fermion. This new fermion is a cousin of the Weyl fermion discovered last year in another class of topological semimetals. The new fermion has a spin-1, a reflection of the 3- fold degeneracy, unlike the spin-½ that the recently discovered Weyl fermions have.

By Staff

An international team of researchers has predicted the existence of several previously unknown types of quantum particles in materials. The particles — which belong to the class of particles known as fermions — can be distinguished by several intrinsic properties, such as their responses to applied magnetic and electric fields. In several cases, fermions in the interior of the material show their presence on the surface via the appearance of electron states called Fermi arcs, which link the different types of fermion states in the material’s bulk.

The research, published online this week in the journal Science, was conducted by a team at Princeton University in collaboration with researchers at the Donostia International Physics Center (DIPC) in Spain and the Max Planck Institute for Chemical Physics of Solids in Germany. The investigators propose that many of the materials hosting the new types of fermions are “protected metals,” which are metals that do not allow, in most circumstances, an insulating state to develop. This research represents the newest avenue in the physics of “topological materials,” an area of science that has already fundamentally changed the way researchers see and interpret states of matter.

The team at Princeton included Barry Bradlyn and Jennifer Cano, both associate research scholars at the Princeton Center for Theoretical Science; Zhijun Wang, a postdoctoral research associate in the Department of Physics, Robert Cava, the Russell Wellman Moore Professor of Chemistry; and B. Andrei Bernevig, associate professor of physics. The research team also included Maia Vergniory, a postdoctoral research fellow at DIPC, and Claudia Felser, a professor of physics and chemistry and director of the Max Planck Institute for Chemical Physics of Solids.

For the past century, gapless fermions, which are quantum particles with no energy gap between their highest filled and lowest unfilled states, were thought to come in three varieties: Dirac, Majorana and Weyl. Condensed matter physics, which pioneers the study of quantum phases of matter, has become fertile ground for the discovery of these fermions in different materials through experiments conducted in crystals. These experiments enable researchers to explore exotic particles using relatively inexpensive laboratory equipment rather than large particle accelerators.

In the past four years, all three varieties of gapless fermions have been theoretically predicted and experimentally observed in different types of crystalline materials grown in laboratories around the world. The Weyl fermion was thought to be last of the group of predicted quasiparticles in nature. Research published earlier this year in the journal Nature (Wang et al., doi:10.1038/nature17410) has shown, however, that this is not the case, with the discovery of a bulk insulator which hosts an exotic surface fermion.

In the current paper, the team predicted and classified the possible exotic fermions that can appear in the bulk of materials. The energy of these fermions can be characterized as a function of their momentum into so-called energy bands, or branches. Unlike the Weyl and Dirac fermions, which, roughly speaking, exhibit an energy spectrum with 2- and 4-fold branches of allowed energy states, the new fermions can exhibit 3-, 6- and 8-fold branches. The 3-, 6-, or 8-fold branches meet up at points – called degeneracy points – in the Brillouin zone, which is the parameter space where the fermion momentum takes its values.

“Symmetries are essential to keep the fermions well-defined, as well as to uncover their physical properties,” Bradlyn said. “Locally, by inspecting the physics close to the degeneracy points, one can think of them as new particles, but this is only part of the story,” he said.

Cano added, “The new fermions know about the global topology of the material. Crucially, they connect to other points in the Brillouin zone in nontrivial ways.”

During the search for materials exhibiting the new fermions, the team uncovered a fundamentally new and systematic way of finding metals in nature. Until now, searching for metals involved performing detailed calculations of the electronic states of matter.

“The presence of the new fermions allows for a much easier way to determine whether a given system is a protected metal or not, in some cases without the need to do a detailed calculation,” Wang said.

Verginory added, “One can just count the number of electrons of a crystal, and figure out, based on symmetry, if a new fermion exists within observable range.”

The researchers suggest that this is because the new fermions require multiple electronic states to meet in energy: The 8-branch fermion requires the presence of 8 electronic states. As such, a system with only 4 electrons can only occupy half of those states and cannot be insulating, thereby creating a protected metal.

“The interplay between symmetry, topology and material science hinted by the presence of the new fermions is likely to play a more fundamental role in our future understanding of topological materials – both semimetals and insulators,” Cava said.

Felser added, “We all envision a future for quantum physical chemistry where one can write down the formula of a material, look at both the symmetries of the crystal lattice and at the valence orbitals of each element, and, without a calculation, be able to tell whether the material is a topological insulator or a protected metal.”

Read the abstract.

Funding for this study was provided by the US Army Research Office Multidisciplinary University Research Initiative, the US Office of Naval Research, the National Science Foundation, the David and Lucile Packard Foundation, the W. M. Keck Foundation, and the Spanish Ministry of Economy and Competitiveness.

Theorists smooth the way to solving one of quantum mechanics oldest problems: Modeling quantum friction (J. Phys. Chem. Letters)

Researchers at Princeton
From left to right: Herschel Rabitz, Renan Cabrera, Andre Campos and Denys Bondar. Photo credit: C. Todd Reichart

By: Tien Nguyen, Department of Chemistry

Theoretical chemists at Princeton University have pioneered a strategy for modeling quantum friction, or how a particle’s environment drags on it, a vexing problem in quantum mechanics since the birth of the field. The study was published in the Journal of Physical Chemistry Letters.

“It was truly a most challenging research project in terms of technical details and the need to draw upon new ideas,” said Denys Bondar, a research scholar in the Rabitz lab and corresponding author on the work.

Quantum friction may operate at the smallest scale, but its consequences can be observed in everyday life. For example, when fluorescent molecules are excited by light, it’s because of quantum friction that the atoms are returned to rest, releasing photons that we see as fluorescence. Realistically modeling this phenomenon has stumped scientists for almost a century and recently has gained even more attention due to its relevance to quantum computing.

“The reason why this problem couldn’t be solved is that everyone was looking at it through a certain lens,” Bondar said. Previous models attempted to describe quantum friction by considering the quantum system as interacting with a surrounding, larger system. This larger system presents an impossible amount of calculations, so in order to simplify the equations to the pertinent interactions, scientists introduced numerous approximations.

These approximations led to numerous different models that could each only satisfy one or the other of two critical requirements. In particular, they could either produce useful observations about the system, or they could obey the Heisenberg Uncertainty Principle, which states that there is a fundamental limit to the precision with which a particle’s position and momentum can be simultaneous measured. Even famed physicist Werner Heisenberg’s attempt to derive an equation for quantum friction was incompatible with his own uncertainty principle.

The researchers’ approach, called operational dynamic modeling (ODM) and introduced in 2012 by the Rabitz group, led to the first model for quantum friction to satisfy both demands. “To succeed with the problem, we had to literally rethink the physics involved, not merely mathematically but conceptually,” Bondar said.

Bondar and his colleagues focused on the two ultimate requirements for their model – that it should obey the Heisenberg principle and produce real observations – and worked backwards to create the proper model.

“Rather than starting with approximations, Denys and the team built in the proper physics in the beginning,” said Herschel Rabitz, the Charles Phelps Smyth ’16 *17 Professor of Chemistry and co-author on the paper. “The model is built on physical and mathematical truisms that must hold. This distinct approach creates a new rigorous and practical formulation for quantum friction,” he said.

The research team included research scholar Renan Cabrera and Ph.D. student Andre Campos as well as Shaul Mukamel, professor of chemistry at the University of California, Irvine.

Their model opens a way forward to understand not only quantum friction but other dissipative phenomena as well. The researchers are interested in exploring the means to manipulate these forces to their advantage. Other theorists are rapidly taking up the new paradigm of operational dynamic modeling, Rabitz said.

Reflecting on how they arrived at such a novel approach, Bondar recalled the unique circumstances under which he first started working on this problem. After he received the offer to work at Princeton, Bondar spent four months awaiting a US work visa (he is a citizen of the Ukraine) and pondering fundamental physics questions. It was during this time that he first thought of this strategy. “The idea was born out of bureaucracy, but it seems to be holding up,” Bondar said.

Read the full article here:

Bondar, D. I.; Cabrera, R.; Campos, A.; Mukamel, S.; Rabitz, H. A. “Wigner-Lindblad Equations for Quantum Friction.J. Phys. Chem. Lett. 2016, 7, 1632.

This work was supported by the US National Science Foundation CHE 1058644, the US Department of Energy DE-FG02-02ER-15344, and ARO-MURI W911NF-11-1-0268.

Electrons slide through the hourglass on surface of bizarre material (Nature)

An illustration of the hourglass fermion predicted to lie on the surface of crystals of potassium mercury antimony. (Bernevig et al., Princeton University)
An illustration of the hourglass fermion predicted to lie on the surface of crystals of potassium mercury antimony. (Image credit: Laura R. Park and Aris Alexandradinata)

By Staff

A team of researchers at Princeton University has predicted the existence of a new state of matter in which current flows only through a set of surface channels that resemble an hourglass. These channels are created through the action of a newly theorized particle, dubbed the “hourglass fermion,” which arises due to a special property of the material. The tuning of this property can sequentially create and destroy the hourglass fermions, suggesting a range of potential applications such as efficient transistor switching.

In an article published in the journal Nature this week, the researchers theorize the existence of these hourglass fermions in crystals made of potassium and mercury combined with either antimony, arsenic or bismuth. The crystals are insulators in their interiors and on their top and bottom surfaces, but perfect conductors on two of their sides where the fermions create hourglass-shaped channels that enable electrons to flow.

The research was performed by Princeton University postdoctoral researcher Zhi Jun Wang and former graduate student Aris Alexandradinata, now a postdoctoral researcher at Yale University, working with Robert Cava, Princeton’s Russell Wellman Moore Professor of Chemistry, and Associate Professor of Physics B. Andrei Bernevig.

The new hourglass fermion exists – theoretically for now, until detected experimentally – in a family of materials broadly called topological insulators, which were first observed experimentally in the mid-2000s and have since become one of the most active and interesting branches of quantum physics research. The bulk, or interior, acts as an insulator, which means it prohibits the travel of electrons, but the surface of the material is conducting, allowing electrons to travel through a set of channels created by particles known as Dirac fermions.

Fermions are a family of subatomic particles that include electrons, protons and neutrons, but they also appear in nature in many lesser known forms such as the massless Dirac, Majorana and Weyl fermions. After years of searching for these particles in high-energy accelerators and other large-scale experiments, researchers found that they can detect these elusive fermions in table-top laboratory experiments on crystals. Over the past few years, researchers have used these “condensed matter” systems to first predict and then confirm the existence of Majorana and Weyl fermions in a wide array of materials.

The next frontier in condensed matter physics is the discovery of particles that can exist in the so-called “material universe” inside crystals but not in the universe at large. Such particles come about due to the properties of the materials but cannot exist outside the crystal the way other subatomic particles do. Classifying and discovering all the possible particles that can exist in the material universe is just beginning. The work reported by the Princeton team lays the foundations of one of the most interesting of these systems, according to the researchers.

In the current study, the researchers theorize that the laws of physics prohibit current from flowing in the crystal’s bulk and top and bottom surfaces, but permit electron flow in completely different ways on the side surfaces through the hourglass-shaped channels. This type of channel, known more precisely as a dispersion, was completely unknown before.

The researchers then asked whether this dispersion is a generic feature found in certain materials or just a fluke arising from a specific crystal model.

It turned out to be no fluke.

A long-standing collaboration with Cava, a material science expert, enabled Bernevig, Wang, and Alexandradinata to uncover more materials exhibiting this remarkable behavior.

“Our hourglass fermion is curiously movable but unremovable,” said Bernevig. “It is impossible to remove the hourglass channel from the surface of the crystal.”

Bernevig explained that this robust property arises from the intertwining of spatial symmetries, which are characteristics of the crystal structure, with the modern band theory of crystals. Spatial symmetries in crystals are distinguished by whether a crystal can be rotated or otherwise moved without altering its basic character.

In a paper published in Physical Review X this week to coincide with the Nature paper, the team detailed the theory behind how the crystal structure leads to the existence of the hourglass fermion.

An illustration of the complicated dispersion of the surface fermion arising from a background of mercury and bismuth atoms (blue and red). (Image credit: Mingyee Tsang and Aris Alexandradinata)
An illustration of the complicated dispersion of the surface fermion arising from a background of mercury and bismuth atoms (blue and red). (Image credit: Mingyee Tsang and Aris Alexandradinata)

“Our work demonstrates how this basic geometric property gives rise to a new topology in band insulators,” Alexandradinata said. The hourglass is a robust consequence of spatial symmetries that translate the origin by a fraction of the lattice period, he explained. “Surface bands connect one hourglass to the next in an unbreakable zigzag pattern,” he said.

The team found esoteric connections between their system and high-level mathematics. Origin-translating symmetries, also called non-symmorphic symmetries, are described by a field of mathematics called cohomology, which classifies all the possible crystal symmetries in nature. For example, cohomology gives the answer to how many crystal types exist in three spatial dimensions: 230.

In the cohomological perspective, there are 230 ways to combine origin-preserving symmetries with real-space translations, known as the “space groups.” The theoretical framework to understand the crystals in the current study requires a cohomological description with momentum-space translations.

“The hourglass theory is the first of its kind that describes time-reversal-symmetric crystals, and moreover, the crystals in our study are the first topological material class which relies on origin-translating symmetries,” added Wang.

Out of the 230 space groups in which materials can exist in nature, 157 are non-symmorphic, meaning they can potentially host interesting electronic behavior such as the hourglass fermion.

“The exploration of the behavior of these interesting fermions, their mathematical description, and the materials where they can be observed, is poised to create an onslaught of activity in quantum, solid state and material physics,” Cava said. “We are just at the beginning.”

The study was funded by the National Science Foundation, the Office of Naval Research, the David and Lucile Packard Foundation, the W. M. Keck Foundation, and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton University.

The paper, “Hourglass fermions” by Zhijun Wang, A. Alexandradinata, R. J. Cava and B. Andrei Bernevig, was published in the April 14, 2016 issue of Nature, 532,189–194, doi:10.1038/nature17410. Read the preprint.

The paper, “Topological insulators from group cohomology” by A. Alexandradinata, Zhijun Wang, and B. Andrei Bernevig, was published in the April 15, 2016 issue of Phys. Rev. X 6, 021008.

Compressing turbulence to improve inertial confinement fusion experiments (PRL)

Compression of a turbulent plasma. Credit: Seth Davidovits
Compression of a turbulent plasma. Credit: Seth Davidovits

By John Greenwald, Princeton Plasma Physics Laboratory

Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Department of Astrophysical Sciences at Princeton University indicate that turbulent swirls of plasma could benefit one of the two major branches of such research.   The editors of Physical Review Letters highlighted these findings — a distinction given to one of every six papers per issue — when they published the results last week on March 11.

Lead author Seth Davidovits, a Princeton University graduate student, and Professor of Astrophysical Sciences Nathaniel Fisch, his thesis adviser and Associate Director for Academic Affairs at PPPL, produced the findings. They modeled the compression of fluid turbulence, showing effects that suggested a surprising positive impact of turbulence on inertial confinement fusion (ICF) experiments.

Stimulating this work were experiments conducted by Professor Yitzhak Maron at the Weizmann Institute of Science in Israel. Those experiments, on a Z-pinch inertial confinement machine, showed turbulence that contained a surprising amount of energy, which caught Fisch’s attention during a recent sabbatical at Weizmann.

In a Z-pinch and other inertial confinement (ICF) machines, plasma is compressed to create fusion energy. The method contrasts with the research done at PPPL and other laboratories, which controls plasma with magnetic fields and heats it to fusion temperatures in doughnut-shaped devices called tokamaks. The largest Z-pinch device in the United States is at the DOE’s Sandia National Laboratory. Other inertial confinement approaches are pursued at, among other places, the DOE’s Lawrence Livermore National Laboratory.

Present ICF approaches use compression to steadily heat the plasma. Methods range from squeezing plasma with magnetic fields at Sandia to firing lasers at capsules filled with plasma at Livermore’s National Ignition Facility. The presence of turbulence in the plasma is widely thought to increase the difficulty of achieving fusion.

But there could be advantages to turbulence if handled properly, the authors point out, since energy contained in turbulence does not radiate away. This compares with hotter plasmas in which heat radiates away quickly, making fusion harder to achieve. By storing the energy of the compression in turbulence rather than temperature, the authors suppress the energy lost to radiation during the compression.

The turbulent energy also does not immediately lead to fusion, which requires high temperature. This means a mechanism is needed to change the turbulence into the temperature required for fusion once the plasma has been compressed.

Davidovits used a software code called Dedalus to show that turbulent energy is increased during the compression, but then suddenly transformed into heat. As external forces in his simulation compress the turbulence to increase the energy stored within it, they also gradually raise the temperature and viscosity of the plasma. The viscosity, which describes how “thick” or resistant to flow a fluid is, acts to slow the turbulence and convert its energy to temperature. The viscosity started small so that the turbulence was initially unhindered. The rapid compression then kept the viscosity growing until it suddenly catalyzed the transfer of energy from the turbulence to the temperature.

In an experiment, this process would create the conditions for nuclear fusion in a plasma composed of the hydrogen isotopes deuterium and tritium. “This suggests a fundamentally different design for compression-based fusion experiments,” Davidovits said, “and a new paradigm for the inertial technique of producing fusion energy.”

He warns, however, that the simulation includes caveats that could diminish the findings. For example, the model doesn’t consider any possible interaction between the plasma and the containing capsule, and highly energetic turbulence might mix parts of the capsule into the plasma and contaminate the fusion fuel.

Nonetheless, the authors call the rapid transfer of turbulent energy into temperature during ICF experiments a “tantalizing” prospect that could benefit such research. And they note that their findings could lead to new understanding of the evolution of the relationship between the pressure, volume and temperature of a gas that is substantially turbulent. Determining this will be quite challenging, they say, “but the understanding will be important not only for the new fusion approach, but also for many situations involving the behavior of low viscosity compressible fluids and gases.”

This research was initiated through a grant by the Defense Threat Reduction Agency, a unit of the U.S. Department of Defense, and has been supported also by the DOE’s National Nuclear Security Administration through a consortium with Cornell University. Recently, the National Science Foundation and the Israel Binational Science Foundation combined funding opportunities to ensure further experiments at Weizmann on this topic and continued collaboration with the Princeton researchers.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract or paper here.

S. Davidovits, N. Fisch, Sudden Viscous Dissipation of Compressing Turbulence. Phys. Rev. Lett. 116, 105004 – Published 11 March 2016.

This work was supported by DOE through Contracts No. DE-AC02-09CH1-1466 and NNSA 67350-9960 (Prime No. DOE DE-NA0001836), by DTRA HDTRA1-11-1-0037, and by NSF Contract No. PHY-1506122.


Down the rabbit hole: how electrons travel through exotic new material (Science)

Electrons on the surface of a Weyl semi-metal
Three-dimensional image using scanning tunneling electron microscopy of electrons on the surface of a Weyl semi-metal, a kind of crystal with unusual conducting and insulating properties. Image credit: Yazdani et al, Princeton University.

By Catherine Zandonella, Office of the Dean for Research

Researchers at Princeton University have observed a bizarre behavior in a strange new crystal that could hold the key for future electronic technologies. Unlike most materials in which electrons travel on the surface, in these new materials the electrons sink into the depths of the crystal through special conductive channels.

“It is like these electrons go down a rabbit hole and show up on the opposite surface,” said Ali Yazdani, the Class of 1909 Professor of Physics. “You don’t find anything else like this in other materials.”

The research was published in the journal Science.

Tantalum arsenide
Crystal structure of tantalum arsenide (TaAs), with Ta in blue and As in green. Image credit: Yazdani et al., Princeton University.

Yazdani and his colleagues discovered the odd behavior while studying electrons in a crystal made of layers of tantalum and arsenic. The material, called a Weyl semi-metal, behaves both like a metal, which conducts electrons, and an insulator, which blocks them. A better understanding of these and other “topological” materials someday could lead to new, faster electronic devices.

The team’s experimental results suggest that the surface electrons plunge into the crystal only when traveling at a certain speed and direction of travel called the Weyl momentum, said Yazdani. “It is as if you have an electron on one surface, and it is cruising along, and when it hits some special value of momentum, it sinks into the crystal and appears on the opposite surface,” he said.

These special values of momentum, also called Weyl points, can be thought of as portals where the electrons can depart from the surface and be conducted to the opposing surface. The theory predicts that the points come in pairs, so that a departing electron will make the return trip through the partner point.

Schematic of the connections between the top and bottom surface of a crystal
New research from Princeton University demonstrates the bizarre movement of electrons through a novel material called a Weyl semi-metal. The image shows a schematic of the connections at special values of electron momentum, which come in pairs and are called Weyl points (red and blue dots). An electron that leaves the surface on a red point can return through its partner blue point, and vice versa. This bizarre behavior is due to the “topological” connections through the bulk of the material. Image credit: Yazdani et al., Princeton University.

The team decided to explore the behavior of these electrons following research, published in Science last year by another Princeton team and separately by two independent groups, revealing that electrons in Weyl semi-metals are quite unusual. For example, their experiments implied that while most surface electrons create a wave pattern that resembles the spreading rings that ripple out when a stone is thrown into a pond, the surface electrons in the new materials should make only a half circle, earning them the name “Fermi arcs.”

To get a more direct look at the patterns of electron flow in Weyl semi-metals, postdoctoral researcher Hiroyuki Inoue and graduate student András Gyenis in Yazdani’s lab, with help from graduate student Seong Woo Oh, used a highly sensitive instrument called a scanning tunneling microscope, one of the few tools that can observe electron waves on a crystal surface.

They obtained the tantalum arsenide crystals from graduate student Shan Jiang and assistant professor Ni Ni at the University of California-Los Angeles.

The results were puzzling. “Some of the interference patterns that we expected to see were missing,” Yazdani said.

Comparison of experiment (left) to theory (right)
Comparison of experiment (left) to theory (right): The image on the left shows a pattern of waves imaged with scanning tunneling microscopy, revealing all the possible ways in which electrons can interfere with each other on the surface. This pattern is dictated by the connection of the surface electrons with the interior of the crystal, which is determined by the Weyl momentum of electrons, the special momentum when the electrons sink easily through the sample. The observed pattern closely matches the pattern predicted by theoretical calculations (right). Image credit: Yazdani et al., Princeton University.

To help explain the phenomenon, Yazdani consulted B. Andrei Bernevig, associate professor of physics at Princeton, who has expertise in the theory of topological materials and whose group was involved in the first predictions of Weyl semi-metals in a 2015 paper published in Physical Review X.

Bernevig, with help from postdoctoral researchers Jian Li and Zhijun Wang, realized that the observed pattern made sense if the electrons in these unusual materials were sinking into the bulk of the crystal. “Nobody had predicted that there would be signals of this type of transport from a scanning tunneling microscope, so it came as a bit of a surprise,” said Bernevig.

The next step, said Bernevig, is to look for the behavior in other crystals.

The research at Princeton was supported by the Army Research Office Multidisciplinary University Research Initiative program (W911NF-12-1-0461), the Gordon and Betty Moore Foundation as part of EPiQS initiative (GBMF4530), the National Science Foundation Materials Research Science and Engineering Centers programs through the Princeton Center for Complex Materials (DMR-1420541, NSF-DMR-1104612, NSF CAREER DMR-0952428), the David and Lucile Packard Foundation, and the W. M. Keck Foundation. This project was also made possible through use of the facilities at Princeton Nanoscale Microscopy Laboratory (ARO-W911NF-1-0262, ONR-N00014-14-1-0330, ONR-N00014-13-10661), the U.S. Department of Energy Basic Energy Sciences (DOE-BES) Defense Advanced Research Projects Agency, the U.S. Space and Naval Warfare Systems Command Meso program (N6601-11-1-4110, LPS and ARO-W911NF-1-0606), and the Eric and Wendy Schmidt Transformative Technology Fund at Princeton. Work at University of California–Los Angeles was supported by the DOE-BES (DE-SC0011978).

Read the abstract.

The article, “Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal,” by Hiroyuki Inoue, András Gyenis, Zhijun Wang, Jian Li, Seong Woo Oh, Shan Jiang, Ni Ni, B. Andrei Bernevig,and Ali Yazdani, was published in the March 11, 2016 issue of the journal Science.

Further reading:

M. Weng, C. Fang, Z. Fang, B. A. Bernevig, X. Dai, Phys. Rev. X 5, 011029 (2015)

Q. Lv et al., Phys. Rev. X 5, 1–8 (2015)

X. Yang et al., Nat. Phys. 11, 728–732 (2015)

Y. Xu et al., Science 349, 613–617 (2015)

PPPL physicists simulate innovative method for starting up tokamaks without using a solenoid (Nuclear Fusion)

Francesca Poli
PPPL Scientist Francesca Poli. Photo Credit: Elle Starkman / PPPL Office of Communications. PPPL, located on Princeton University’s Forrestal Campus and managed by the University, is devoted to developing practical solutions for the creation of sustainable energy from fusion and to creating new knowledge about the physics of ultra-hot, charged gases known as plasmas.

By Raphael Rosen, PPPL Office of Communications

Scientists at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) have produced self-consistent computer simulations that capture the evolution of an electric current inside fusion plasma without using a central electromagnet, or solenoid.

The computer simulations of the process, known as non-inductive current ramp-up, were performed using TRANSP, the gold-standard code developed at PPPL. The results were published in October 2015 in the journal Nuclear Fusion. The research was supported by the DOE Office of Science.

In traditional donut-shaped tokamaks, a large solenoid runs down the center of the reactor. By varying the electrical current in the solenoid scientists induce a current in the plasma. This current starts up the plasma and creates a second magnetic field that completes the forces that hold the hot, charged gas together.

But spherical tokamaks, a compact variety of fusion reactor that produces high plasma pressure with relatively low magnetic fields, have little room for solenoids. Spherical tokamaks look like cored apples and have a smaller central hole for the solenoid than conventional tokamaks do. Physicists, therefore, have been trying to find alternative methods for producing the current that starts the plasma and completes the magnetic field in spherical tokamaks.

One such method is known as coaxial helicity injection (CHI). During CHI, researchers switch on an electric coil that runs beneath the tokamak. Above this coil is a gap that opens into the tokamak’s vacuum vessel and circles the tokamak’s floor. The switched-on electrical current produces a magnetic field that connects metal plates on either side of the gap.

Researchers next puff gas through the gap and discharge a spark across the two plates. This process causes magnetic reconnection — the process by which the magnetic fields snap apart and reconnect. This reconnection creates a magnetic bubble that fills the tokamak and produces the vital electric current that starts up the plasma and completes the magnetic field.

This current must be nurtured and fed. According to lead author Francesca Poli, the new computer simulations show that the current can best be sustained by injecting high-harmonic radio-frequency waves (HHFWs) and neutral beams into the plasma.

HHFW’s are radio-frequency waves that can heat both electrons and ions. The neutral beams, which consist of streams of hydrogen atoms, become charged when they enter the plasma and interact with the ions. The combination of the HHFWs and neutral beams increases the current from 300 kiloamps to 1 mega amp.

But neither HHFWs nor neutral beams can be used at the start of the process, when the plasma is relatively cool and not very dense. Poli found that HHFWs would be more effective if the plasma were first heated by electron cyclotron waves, which transfer energy to the electrons that circle the magnetic field lines.

“With no electron cyclotron waves you would have to pump in four megawatts of HHFW power to create 400 kiloamps of current,” she said. “With these waves you can get the same amount of current by pumping in only one megawatt of power.

“All of this is important because it’s hard to control the plasma at the start-up,” she added. “So the faster you can control the plasma, the better.”

PPPL is managed by Princeton University for the U.S. Department of Energy’s Office of Science.

Read the abstract.

F.M. Poli, R.G. Andre, N. Bertelli, S.P. Gerhardt, D. Mueller and G. Taylor. “Simulations towards the achievement of non-inductive current ramp-up and sustainment in the National Spherical Torus Experiment Upgrade.” Nuclear Fusion. Published October 30, 2015. DOI: 10.1088/0029-5515/55/12/123011

Using powerful computers, physicists uncover mechanism that stabilizes plasma (Physical Review Letters)

Virtual plasma
A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once. Image Credit: Stephen Jardin, PPPL.

By Raphael Rosen, Princeton Plasma Physics Laboratory Communications

A team of physicists led by Stephen Jardin of the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a “sawtooth cycle” and can cause instabilities within the plasma’s core. The results have been published online in Physical Review Letters. The research was supported by the DOE Office of Science.

The team, which included scientists from General Atomics and the Max Planck Institute for Plasma Physics, performed calculations on the Edison computer at the National Energy Research Scientific Computing Center, a division of the Lawrence Berkeley National Laboratory. Using M3D-C1, a program they developed that creates three-dimensional simulations of fusion plasmas, the team found that under certain conditions a helix-shaped whirlpool of plasma forms around the center of the tokamak. The swirling plasma acts like a dynamo — a moving fluid that creates electric and magnetic fields. Together these fields prevent the current flowing through plasma from peaking and crashing.

The researchers found two specific conditions under which the plasma behaves like a dynamo. First, the magnetic lines that circle the plasma must rotate exactly once, both the long way and the short way around the doughnut-shaped configuration, so an electron or ion following a magnetic field line would end up exactly where it began. Second, the pressure in the center of the plasma must be significantly greater than at the edge, creating a gradient between the two sections. This gradient combines with the rotating magnetic field lines to create spinning rolls of plasma that swirl around the tokamak and gives rise to the dynamo that maintains equilibrium and produces stability.

This dynamo behavior arises only under certain conditions. Both the electrical current running through the plasma and the pressure that the plasma’s electrons and ions exert on their neighbors must be in a range that is “not too large and not too small,” said Jardin. In addition, the speed at which the conditions for the fusion reaction are established must be “not too fast and not too slow.”

Jardin stressed that once a range of conditions like pressure and current are set, the dynamo phenomenon occurs all by itself. “We don’t have to do anything else from the outside,” he noted. “It’s something like when you drain your bathtub and a whirlpool forms over the drain by itself. But because a plasma is more complicated than water, the whirlpool that forms in the tokamak needs to also generate the voltage to sustain itself.”

During the simulations the scientists were able to virtually add new diagnostics, or probes, to the computer code. “These diagnostics were able to measure the helical velocity fields, electric potential, and magnetic fields to clarify how the dynamo forms and persists,” said Jardin. The persistence produces the “voltage in the center of the discharge that keeps the plasma current from peaking.”

Physicists have indirectly observed what they believe to be the dynamo behavior on the DIII-D National Fusion Facility that General Atomics operates for the Department of Energy in San Diego and on the ASDEX Upgrade in Garching, Germany. They hope to learn to create these conditions on demand, especially in ITER, the huge multinational fusion machine being constructed in France to demonstrate the practicality of fusion power. “Now that we understand it better, we think that computer simulations will show us under what conditions this will occur in ITER,” said Jardin. “That will be the focus of our research in the near future.”

Learning how to create these conditions will be particularly important for ITER, which will produce helium nuclei that could amplify the sawtooth disruptions. If large enough, these disruptions could cause other instabilities that could halt the fusion process. Preventing the cycle from starting would therefore be highly beneficial for the ITER experiment.

Read the abstract.

S.C. Jardin, N. Ferraro, and I. Krebs. “Self-Organized Stationary States of Tokamaks.” Physical Review Letters. Published November 17, 2015. DOI: http://dx.doi.org/10.1103/PhysRevLett.115.215001

This article is courtesy of the Princeton Plasma Physics Laboratory.