An explanation for the mysterious onset of a universal process (Physics of Plasmas)

Solar flares
Magnetic reconnection happens in solar flares on the surface in the sun, as well as in experimental fusion energy reactors here on Earth. Image credit: NASA.

By John Greenwald, Princeton Plasma Physics Laboratory Communications

Scientists have proposed a groundbreaking solution to a mystery that has puzzled physicists for decades. At issue is how magnetic reconnection, a universal process that sets off solar flares, northern lights and cosmic gamma-ray bursts, occurs so much faster than theory says should be possible. The answer, proposed by researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University, could aid forecasts of space storms, explain several high-energy astrophysical phenomena, and improve plasma confinement in doughnut-shaped magnetic devices called tokamaks designed to obtain energy from nuclear fusion.

Magnetic reconnection takes place when the magnetic field lines embedded in a plasma — the hot, charged gas that makes up 99 percent of the visible universe — converge, break apart and explosively reconnect. This process takes place in thin sheets in which electric current is strongly concentrated.

According to conventional theory, these sheets can be highly elongated and severely constrain the velocity of the magnetic field lines that join and split apart, making fast reconnection impossible. However, observation shows that rapid reconnection does exist, directly contradicting theoretical predictions.

Detailed theory for rapid reconnection

Now, physicists at PPPL and Princeton University have presented a detailed theory for the mechanism that leads to fast reconnection. Their paper, published in the journal Physics of Plasmas in October, focuses on a phenomenon called “plasmoid instability” to explain the onset of the rapid reconnection process. Support for this research comes from the National Science Foundation and the DOE Office of Science.

Plasmoid instability, which breaks up plasma current sheets into small magnetic islands called plasmoids, has generated considerable interest in recent years as a possible mechanism for fast reconnection. However, correct identification of the properties of the instability has been elusive.

Luca Comisson, PPPL
Luca Comisso, lead author of the study. Photo courtesy of PPPL.

The Physics of Plasmas paper addresses this crucial issue. It presents “a quantitative theory for the development of the plasmoid instability in plasma current sheets that can evolve in time” said Luca Comisso, lead author of the study. Co-authors are Manasvi Lingam and Yi-Min Huang of PPPL and Princeton, and Amitava Bhattacharjee, head of the Theory Department at PPPL and Princeton professor of astrophysical sciences.

Pierre de Fermat’s principle

The paper describes how the plasmoid instability begins in a slow linear phase that goes through a period of quiescence before accelerating into an explosive phase that triggers a dramatic increase in the speed of magnetic reconnection. To determine the most important features of this instability, the researchers adapted a variant of the 17th century “principle of least time” originated by the mathematician Pierre de Fermat.

Use of this principle enabled the researchers to derive equations for the duration of the linear phase, and for computing the growth rate and number of plasmoids created. Hence, this least-time approach led to a quantitative formula for the onset time of fast magnetic reconnection and the physics behind it.

The paper also produced a surprise. The authors found that such relationships do not reflect traditional power laws, in which one quantity varies as a power of another. “It is common in all realms of science to seek the existence of power laws,” the researchers wrote. “In contrast, we find that the scaling relations of the plasmoid instability are not true power laws – a result that has never been derived or predicted before.”

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by Princeton University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract here: Comisso, L.; Lingam, M.; Huang, Y.-M.; Bhattacharjee, A. General theory of the plasmoid instability. Physics of Plasmas 23, 2016. DOI: 10.1063/1.4964481

 

 

 

 

Major next steps proposed for fusion energy based on the spherical tokamak design (Nuclear Fusion)

Test cell of the NSTX-U with tokamak in the center (Credit: Princeton Plasma Physics Laboratory)
Test cell of the NSTX-U with tokamak in the center (Credit: Princeton Plasma Physics Laboratory)

By John Greenwald, Princeton Plasma Physics Laboratory

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility — or “bottle” — that will provide the next steps in the development of fusion reactors. Leading candidates include spherical tokamaks, compact machines that are shaped like cored apples, compared with the doughnut-like shape of conventional tokamaks.  The spherical design produces high-pressure plasmas — essential ingredients for fusion reactions — with relatively low and cost-effective magnetic fields.

A possible next step is a device called a Fusion Nuclear Science Facility (FNSF) that could develop the materials and components for a fusion reactor. Such a device could precede a pilot plant that would demonstrate the ability to produce net energy.

Spherical tokamaks as excellent models

Spherical tokamaks could be excellent models for an FNSF, according to a paper published online in the journal Nuclear Fusion on August 16. The two most advanced spherical tokamaks in the world today are the recently completed National Spherical Torus Experiment-Upgrade (NSTX-U) at the U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL), which is managed by Princeton University, and the Mega Ampere Spherical Tokamak (MAST), which is being upgraded at the Culham Center for Fusion Energy in the United Kingdom.

“We are opening up new options for future plants,” said Jonathan Menard, program director for the NSTX-U and lead author of the paper, which discusses the fitness of both spherical tokamaks as possible models. Support for this work comes from the DOE Office of Science.

Jonathan Menard, program director for the NSTX-U and lead author of the paper (Credit: Elle Stark, PPPL)
Jonathan Menard, program director for the NSTX-U and lead author of the paper (Credit: Elle Stark, PPPL)

The 43-page paper considers the spherical design for a combined next-step bottle: an FNSF that could become a pilot plant and serve as a forerunner for a commercial fusion reactor. Such a facility could provide a pathway leading from ITER, the international tokamak under construction in France to demonstrate the feasibility of fusion power, to a commercial fusion power plant.

A key issue for this bottle is the size of the hole in the center of the tokamak that holds and shapes the plasma. In spherical tokamaks, this hole can be half the size of the hole in conventional tokamaks. These differences, reflected in the shape of the magnetic field that confines the superhot plasma, have a profound effect on how the plasma behaves.

Designs for the Fusion Nuclear Science Facility

First up for a next-step device would be the FNSF. It would test the materials that must face and withstand the neutron bombardment that fusion reactions produce, while also generating a sufficient amount of its own fusion fuel. According to the paper, recent studies have for the first time identified integrated designs that would be up to the task.

These integrated capabilities include:

  • A blanket system able to breed tritium, a rare isotope — or form — of hydrogen that fuses with deuterium, another isotope of the atom, to generate the fusion reactions.  The spherical design could breed approximately one isotope of tritium for each isotope consumed in the reaction, producing tritium self-sufficiency.
  • A lengthy configuration of the magnetic field that vents exhaust heat from the tokamak. This configuration, called a “divertor,” would reduce the amount of heat that strikes and could damage the interior wall of the tokamak.
  • A vertical maintenance scheme in which the central magnet and the blanket structures that breed tritium can be removed independently from the tokamak for installation, maintenance, and repair. Maintenance of these complex nuclear facilities represents a significant design challenge. Once a tokamak operates with fusion fuel, this maintenance must be done with remote-handling robots; the new paper describes how this can be accomplished.

For pilot plant use, superconducting coils that operate at high temperature would replace the copper coils in the FNSF to reduce power loss. The plant would generate a small amount of net electricity in a facility that would be as compact as possible and could more easily scale to a commercial fusion power station.

High-temperature superconductors

High-temperature superconductors could have both positive and negative effects. While they would reduce power loss, they would require additional shielding to protect the magnets from heating and radiation damage. This would make the machine larger and less compact.

Recent advances in high-temperature superconductors could help overcome this problem. The advances enable higher magnetic fields, using much thinner magnets than are presently achievable, leading to reduction in the refrigeration power needed to cool the magnets. Such superconducting magnets open the possibility that all FNSF and associated pilot plants based on the spherical tokamak design could help minimize the mass and cost of the main confinement magnets.

For now, the increased power of the NSTX-U and the soon-to-be-completed MAST facility moves them closer to the capability of a commercial plant that will create safe, clean and virtually limitless energy. “NSTX-U and MAST-U will push the physics frontier, expand our knowledge of high temperature plasmas, and, if successful, lay the scientific foundation for fusion development paths based on more compact designs,” said PPPL Director Stewart Prager.

Twice the power and five times the pulse length

The NSTX-U has twice the power and five times the pulse length of its predecessor and will explore how plasma confinement and sustainment are influenced by higher plasma pressure in the spherical geometry. The MAST upgrade will have comparable prowess and will explore a new, state-of-the art method for exhausting plasmas that are hotter than the core of the sun without damaging the machine.

“The main reason we research spherical tokamaks is to find a way to produce fusion at much less cost than conventional tokamaks require,” said Ian Chapman, the newly appointed chief executive of the United Kingdom Atomic Energy Authority and leader of the UK’s magnetic confinement fusion research program at the Culham Science Center.

The ability of these machines to create high plasma performance within their compact geometries demonstrates their fitness as possible models for next-step fusion facilities. The wide range of considerations, calculations and figures detailed in this study strongly support the concept of a combined FNSF and pilot plant based on the spherical design. The NSTX-U and MAST-U devices must now successfully prototype the necessary high-performance scenarios.

Read the abstract

J.E. Menard, T. Brown, L. El-Guebaly, M. Boyer, J. Canik, B. Colling, R. Raman, Z. Wang, Y. Zhai,P. Buxton, B. Covele, C. D’Angelo, A. Davis, S. Gerhardt, M. Gryaznevich, M. Harb, T.C. Hender,S. Kaye, D. Kingham, M. Kotschenreuther, S. Mahajan, R. Maingi, E. Marriott, E.T. Meier, L. Mynsberge, C. Neumeyer, M. Ono, J.-K. Park, S.A. Sabbagh, V. Soukhanovskii, P. Valanju and R. Woolley. Fusion nuclear science facilities and pilot plants based on the spherical tokamak. Nucl. Fusion 56 (2016) — Published 16 August 2016.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

PPPL researchers combine quantum mechanics and Einstein’s theory of special relativity to clear up puzzles in plasma physics (Phys. Rev. A)

Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)
Sketch of a pulsar, center, in binary star system (Photo credit: NASA Goddard Space Flight Center)

By John Greenwald, Princeton Plasma Physics Laboratory Communications

Among the intriguing issues in plasma physics are those surrounding X-ray pulsars — collapsed stars that orbit around a cosmic companion and beam light at regular intervals, like lighthouses in the sky.  Physicists want to know the strength of the magnetic field and density of the plasma that surrounds these pulsars, which can be millions of times greater than the density of plasma in stars like the sun.

Researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a theory of plasma waves that can infer these properties in greater detail than in standard approaches. The new research analyzes the plasma surrounding the pulsar by coupling Einstein’s theory of relativity with quantum mechanics, which describes the motion of subatomic particles such as the atomic nuclei — or ions — and electrons in plasma. Supporting this work is the DOE Office of Science.

Quantum field theory

Graduate student Yuan Shi Graduate student Yuan Shi (Photo by Elle Starkman/PPPL Office of Communications)
Graduate student Yuan Shi (Photo by Elle Starkman/PPPL Office of Communications)

The key insight comes from quantum field theory, which describes charged particles that are relativistic, meaning that they travel at near the speed of light. “Quantum theory can describe certain details of the propagation of waves in plasma,” said Yuan Shi, a graduate student at Princeton University in the Department of Astrophysics’ Princeton Program in Plasma Physics, and lead author of a paper published July 29 in the journal Physical Review A.  Understanding the interactions behind the propagation can then reveal the composition of the plasma.

Shi developed the paper with assistance from co-authors Nathaniel Fisch, director of the Princeton Program in Plasma Physics and professor and associate chair of astrophysical sciences at Princeton University, and Hong Qin, a physicist at PPPL and executive dean of the School of Nuclear Science and Technology at the University of Science and Technology of China.  “When I worked out the mathematics they showed me how to apply it,” said Shi. 

In pulsars, relativistic particles in the magnetosphere, which is the magnetized atmosphere surrounding the pulsar, absorb light waves, and this absorption displays peaks. “The question is, what do these peaks mean?” asks Shi. Analysis of the peaks with equations from special relativity and quantum field theory, he found, can determine the density and field strength of the magnetosphere.

Combining physics techniques

The process combines the techniques of high-energy physics, condensed matter physics, and plasma physics.  In high-energy physics, researchers use quantum field theory to describe the interaction of a handful of particles. In condensed matter physics, people use quantum mechanics to describe the states of a large collection of particles. Plasma physics uses model equations to explain the collective movement of millions of particles. The new method utilizes aspects of all three techniques to analyze the plasma waves in pulsars.

The same technique can be used to infer the density of the plasma and strength of the magnetic field created by inertial confinement fusion experiments. Such experiments use lasers to ablate — or vaporize —a target that contains plasma fuel. The ablation then causes an implosion that compresses the fuel into plasma and produces fusion reactions.

Standard formulas give inconsistent answers

Researchers want to know the precise density, temperature and field strength of the plasma that this process creates. Standard mathematical formulas give inconsistent answers when lasers of different color are used to measure the plasma parameters. This is because the extreme density of the plasma gives rise to quantum effects, while the high energy density of the magnetic field gives rise to relativistic effects, says Shi. So formulations that draw upon both fields are needed to reconcile the results.

For Shi, the new technique shows the benefits of combining physics disciplines that don’t often interact. Says he: “Putting fields together gives tremendous power to explain things that we couldn’t understand before.”

Read the abstract

Yuan Shi, Nathaniel J. Fisch, and Hong Qin. Effective-action approach to wave propagation in scalar QED plasmas. Phys. Rev. A 94, 012124 – Published 29 July 2016.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by Princeton University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Compressing turbulence to improve inertial confinement fusion experiments (PRL)

Compression of a turbulent plasma. Credit: Seth Davidovits
Compression of a turbulent plasma. Credit: Seth Davidovits

By John Greenwald, Princeton Plasma Physics Laboratory

Physicists have long regarded plasma turbulence as unruly behavior that can limit the performance of fusion experiments. But new findings by researchers associated with the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) and the Department of Astrophysical Sciences at Princeton University indicate that turbulent swirls of plasma could benefit one of the two major branches of such research.   The editors of Physical Review Letters highlighted these findings — a distinction given to one of every six papers per issue — when they published the results last week on March 11.

Lead author Seth Davidovits, a Princeton University graduate student, and Professor of Astrophysical Sciences Nathaniel Fisch, his thesis adviser and Associate Director for Academic Affairs at PPPL, produced the findings. They modeled the compression of fluid turbulence, showing effects that suggested a surprising positive impact of turbulence on inertial confinement fusion (ICF) experiments.

Stimulating this work were experiments conducted by Professor Yitzhak Maron at the Weizmann Institute of Science in Israel. Those experiments, on a Z-pinch inertial confinement machine, showed turbulence that contained a surprising amount of energy, which caught Fisch’s attention during a recent sabbatical at Weizmann.

In a Z-pinch and other inertial confinement (ICF) machines, plasma is compressed to create fusion energy. The method contrasts with the research done at PPPL and other laboratories, which controls plasma with magnetic fields and heats it to fusion temperatures in doughnut-shaped devices called tokamaks. The largest Z-pinch device in the United States is at the DOE’s Sandia National Laboratory. Other inertial confinement approaches are pursued at, among other places, the DOE’s Lawrence Livermore National Laboratory.

Present ICF approaches use compression to steadily heat the plasma. Methods range from squeezing plasma with magnetic fields at Sandia to firing lasers at capsules filled with plasma at Livermore’s National Ignition Facility. The presence of turbulence in the plasma is widely thought to increase the difficulty of achieving fusion.

But there could be advantages to turbulence if handled properly, the authors point out, since energy contained in turbulence does not radiate away. This compares with hotter plasmas in which heat radiates away quickly, making fusion harder to achieve. By storing the energy of the compression in turbulence rather than temperature, the authors suppress the energy lost to radiation during the compression.

The turbulent energy also does not immediately lead to fusion, which requires high temperature. This means a mechanism is needed to change the turbulence into the temperature required for fusion once the plasma has been compressed.

Davidovits used a software code called Dedalus to show that turbulent energy is increased during the compression, but then suddenly transformed into heat. As external forces in his simulation compress the turbulence to increase the energy stored within it, they also gradually raise the temperature and viscosity of the plasma. The viscosity, which describes how “thick” or resistant to flow a fluid is, acts to slow the turbulence and convert its energy to temperature. The viscosity started small so that the turbulence was initially unhindered. The rapid compression then kept the viscosity growing until it suddenly catalyzed the transfer of energy from the turbulence to the temperature.

In an experiment, this process would create the conditions for nuclear fusion in a plasma composed of the hydrogen isotopes deuterium and tritium. “This suggests a fundamentally different design for compression-based fusion experiments,” Davidovits said, “and a new paradigm for the inertial technique of producing fusion energy.”

He warns, however, that the simulation includes caveats that could diminish the findings. For example, the model doesn’t consider any possible interaction between the plasma and the containing capsule, and highly energetic turbulence might mix parts of the capsule into the plasma and contaminate the fusion fuel.

Nonetheless, the authors call the rapid transfer of turbulent energy into temperature during ICF experiments a “tantalizing” prospect that could benefit such research. And they note that their findings could lead to new understanding of the evolution of the relationship between the pressure, volume and temperature of a gas that is substantially turbulent. Determining this will be quite challenging, they say, “but the understanding will be important not only for the new fusion approach, but also for many situations involving the behavior of low viscosity compressible fluids and gases.”

This research was initiated through a grant by the Defense Threat Reduction Agency, a unit of the U.S. Department of Defense, and has been supported also by the DOE’s National Nuclear Security Administration through a consortium with Cornell University. Recently, the National Science Foundation and the Israel Binational Science Foundation combined funding opportunities to ensure further experiments at Weizmann on this topic and continued collaboration with the Princeton researchers.

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Read the abstract or paper here.

S. Davidovits, N. Fisch, Sudden Viscous Dissipation of Compressing Turbulence. Phys. Rev. Lett. 116, 105004 – Published 11 March 2016.

This work was supported by DOE through Contracts No. DE-AC02-09CH1-1466 and NNSA 67350-9960 (Prime No. DOE DE-NA0001836), by DTRA HDTRA1-11-1-0037, and by NSF Contract No. PHY-1506122.