Gypsy moth caterpillar takes bite out of forest carbon storage (Environmental Research Letters)

Forests are important carbon dioxide storage mechanisms, but a voracious leaf-eating caterpillar is cutting into the trees’ capacity to remove the greenhouse gas from the atmosphere, according to new research by scientists at Princeton University, Rutgers University and the United States Forest Service.

The gypsy moth caterpillar, widespread in the northeastern United States, can wreak devastation on forests as it devours the leaves of oak, pine, and other tree species. The new research found that this defoliation has a significant detrimental effect on the ecosystem’s capacity to act as a carbon sink.

The study found that an oak-pine forest in the New Jersey pinelands hit by the gypsy moth every five years would store about one-third less of the above-ground carbon as an unharmed similar forest, according to David Medvigy, assistant professor of geosciences at Princeton University.

The research was conducted by Medvigy and Karina Schäfer, assistant professor of ecosystem ecology at Rutgers University as well as researchers from the US Forest Service: Kenneth Clark of the Silas Little Experimental Forest in New Jersey and Nicholas Skowronski of the Northern Research Station in West Virginia.

The research was published in the journal Environmental Research Letters. (Read the open access article.) A news article about the study can be found here.

Citation: Medvigy, D., K. L. Clark, N. S. Skowronskiand and K. V. R. Schäfer. 2012. Simulated impacts of insect defoliation on forest carbon dynamics. Environ. Res. Lett. 7 045703

 

Effects of climate and land management on the type and location of vegetation in wetlands (PNAS)

Periodic floods are a normal occurrence in wetlands. To find out how these floods impact niches of different plant species in wetlands, Princeton researchers studied plant species in Everglades National Park (ENP) in Florida. They found that the sizes of the clusters of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. They modeled the effect that periodic flooding and neighboring vegetation have on plant clusters. They found that climate and land management have a predictable impact on the type of vegetation and its spatial organization in wetlands. The findings are highly relevant for the management of wetland ecosystems.

R Foti, M Del Jesus, A Rinaldo, and I Rodriguez-Iturbe. Hydroperiod regime controls the organization of plant species in wetlands.
PNAS, November 13, 2012

Read the abstract