‘Material universe’ yields surprising new particle (Nature)

By Staff

tungsten ditelluride
A crystal of tungsten ditelluride is shown. Image courtesy of Wudi Wang and N. Phuan Ong, Princeton University.

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act as insulators for current applied in some directions and as conductors for current applied in other directions. This behavior suggests a range of potential applications, from low-energy devices to efficient transistors.

The researchers theorize that the particle exists in a material known as tungsten ditelluride (WTe2), which the researchers liken to a “material universe” because it contains several particles, some of which exist under normal conditions in our universe and others that may exist only in these specialized types of crystals. The research appeared in the journal Nature this week.

The new particle is a cousin of the Weyl fermion, one of the particles in standard quantum field theory. However, the type-II particle exhibits very different responses to electromagnetic fields, being a near perfect conductor in some directions of the field and an insulator in others.

The research was led by Princeton University Associate Professor of Physics B. Andrei Bernevig, as well as Matthias Troyer and Alexey Soluyanov of ETH Zurich, and Xi Dai of the Chinese Academy of Sciences Institute of Physics. The team included Postdoctoral Research Associates Zhijun Wang at Princeton and QuanSheng Wu at ETH Zurich, and graduate student Dominik Gresch at ETH Zurich.

The particle’s existence was missed by physicist Hermann Weyl during the initial development of quantum theory 85 years ago, say the researchers, because it violated a fundamental rule, called Lorentz symmetry, that does not apply in the materials where the new type of fermion arises.

Particles in our universe are described by relativistic quantum field theory, which combines quantum mechanics with Einstein’s theory of relativity. Under this theory, solids are formed of atoms that consist of a nuclei surrounded by electrons. Because of the sheer number of electrons interacting with each other, it is not possible to solve exactly the problem of many-electron motion in solids using quantum mechanical theory.

Instead, our current knowledge of materials is derived from a simplified perspective where electrons in solids are described in terms of special non-interacting particles, called quasiparticles, that move in the effective field created by charged entities called ions and electrons. These quasiparticles, dubbed Bloch electrons, are also fermions.

Just as electrons are elementary particles in our universe, Bloch electrons can be considered the elementary particles of a solid. In other words, the crystal itself becomes a “universe,” with its own elementary particles.

In recent years, researchers have discovered that such a “material universe” can host all other particles of relativistic quantum field theory. Three of these quasiparticles, the Dirac, Majorana, and Weyl fermions, were discovered in such materials, despite the fact that the latter two had long been elusive in experiments, opening the path to simulate certain predictions of quantum field theory in relatively inexpensive and small-scale experiments carried out in these “condensed matter” crystals.

These crystals can be grown in the laboratory, so experiments can be done to look for the newly predicted fermion in WTe2 and another candidate material, molybdenum ditelluride (MoTe2).

“One’s imagination can go further and wonder whether particles that are unknown to relativistic quantum field theory can arise in condensed matter,” said Bernevig. There is reason to believe they can, according to the researchers.

The universe described by quantum field theory is subject to the stringent constraint of a certain rule-set, or symmetry, known as Lorentz symmetry, which is characteristic of high-energy particles. However, Lorentz symmetry does not apply in condensed matter because typical electron velocities in solids are very small compared to the speed of light, making condensed matter physics an inherently low-energy theory.

“One may wonder,” Soluyanov said, “if it is possible that some material universes host non-relativistic ‘elementary’ particles that are not Lorentz-symmetric?”

This question was answered positively by the work of the international collaboration. The work started when Soluyanov and Dai were visiting Bernevig in Princeton in November 2014 and the discussion turned to strange unexpected behavior of certain metals in magnetic fields (Nature 514, 205-208, 2014, doi:10.1038/nature13763). This behavior had already been observed by experimentalists in some materials, but more work is needed to confirm it is linked to the new particle.

The researchers found that while relativistic theory only allows a single species of Weyl fermions to exist, in condensed matter solids two physically distinct Weyl fermions are possible. The standard type-I Weyl fermion has only two possible states in which it can reside at zero energy, similar to the states of an electron which can be either spin-up or spin-down. As such, the density of states at zero energy is zero, and the fermion is immune to many interesting thermodynamic effects. This Weyl fermion exists in relativistic field theory, and is the only one allowed if Lorentz invariance is preserved.

The newly predicted type-2 Weyl fermion has a thermodynamic number of states in which it can reside at zero energy – it has what is called a Fermi surface. Its Fermi surface is exotic, in that it appears along with touching points between electron and hole pockets. This endows the new fermion with a scale, a finite density of states, which breaks Lorentz symmetry.

Left: Allowed states for the standard type-I Weyl fermion. When energy is tuned from below, at zero energy, a pinch in the number of allowed states guarantees the absence of many-body phenomena such as superconductivity or ordering. Right: The newly discovered type-II Weyl fermion. At zero energy, a large number of allowed states are still available. This allows for the presence of superconductivity, magnetism, and pair-density wave phenomena. Credit B. Andrei Bernevig et al.
Left: Allowed states for the standard type-I Weyl fermion. When energy is tuned from below, at zero energy, a pinch in the number of allowed states guarantees the absence of many-body phenomena such as superconductivity or ordering.
Right: The newly discovered type-II Weyl fermion. At zero energy, a large number of allowed states are still available. This allows for the presence of superconductivity, magnetism, and pair-density wave phenomena.
Credit
B. Andrei Bernevig et al.

The discovery opens many new directions. Most normal metals exhibit an increase in resistivity when subject to magnetic fields, a known effect used in many current technologies. The recent prediction and experimental realization of standard type-I Weyl fermions in semimetals by two groups in Princeton and one group in IOP Beijing showed that the resistivity can actually decrease if the electric field is applied in the same direction as the magnetic field, an effect called negative longitudinal magnetoresistance. The new work shows that materials hosting a type-II Weyl fermion have mixed behavior: While for some directions of magnetic fields the resistivity increases just like in normal metals, for other directions of the fields, the resistivity can decrease like in the Weyl semimetals, offering possible technological applications.

“Even more intriguing is the perspective of finding more ‘elementary’ particles in other condensed matter systems,” the researchers say. “What kind of other particles can be hidden in the infinite variety of material universes? The large variety of emergent fermions in these materials has only begun to be unraveled.”

Researchers at Princeton University were supported by the U.S. Department of Defense, the U.S. Office of Naval Research, the U.S. National Science Foundation, the David and Lucile Packard Foundation and the W.M. Keck Foundation. Researchers at ETH Zurich were supported by Microsoft Research, the Swiss National Science Foundation and the European Research Council. Xi Dai was supported by the National Natural Science Foundation of China, the 973 program of China and the Chinese Academy of Sciences.

The article, “Type II Weyl Semimetals,” by Alexey A. Soluyanov, Dominik Gresch, Zhijun Wang, QuanSheng Wu, Matthias Troyer, Xi Dai, and B. Andrei Bernevig was published in the journal Nature on November 26, 2015.

Read the abstract.

Army ants’ ‘living’ bridges span collective intelligence, ‘swarm’ robotics (PNAS)

By Morgan Kelly, Office of Communications

Columns of workers penetrate the forest, furiously gathering as much food and supplies as they can. They are a massive army that living things know to avoid, and that few natural obstacles can waylay. So determined are these legions that should a chasm or gap disrupt the most direct path to their spoils they simply build a new path — out of themselves.

Without any orders or direction, individuals from the rank and file instinctively stretch across the opening, clinging to one another as their comrades-in-arms swarm across their bodies. But this is no force of superhumans. They are army ants of the species Eciton hamatum, which form “living” bridges across breaks and gaps in the forest floor that allow their famously large raiding swarms to travel efficiently.

Researchers from Princeton University and the New Jersey Institute of Technology (NJIT) report for the first time that these structures are more sophisticated than scientists knew. The ants exhibit a level of collective intelligence that could provide new insights into animal behavior and even help in the development of intuitive robots that can cooperate as a group, the researchers said.

Ants of E. hamatum automatically form living bridges without any oversight from a “lead” ant, the researchers report in the journal Proceedings of the National Academy of the Sciences. The action of each individual coalesces into a group unit that can adapt to the terrain and also operates by a clear cost-benefit ratio. The ants will create a path over an open space up to the point when too many workers are being diverted from collecting food and prey.

“These ants are performing a collective computation. At the level of the entire colony, they’re saying they can afford this many ants locked up in this bridge, but no more than that,” said co-first author Matthew Lutz, a graduate student in Princeton’s Department of Ecology and Evolutionary Biology.

“There’s no single ant overseeing the decision, they’re making that calculation as a colony,” Lutz said. “Thinking about this cost-benefit framework might be a new insight that can be applied to other animal structures that people haven’t thought of before.”

The research could help explain how large groups of animals balance cost and benefit, about which little is known, said co-author Iain Couzin, a Princeton visiting senior research scholar in ecology and evolutionary biology, and director of the Max Planck Institute for Ornithology and chair of biodiversity and collective behavior at the University of Konstanz in Germany.

Previous studies have shown that single creatures use “rules of thumb” to weigh cost-and-benefit, said Couzin, who also is Lutz’s graduate adviser. This new work shows that in large groups these same individual guidelines can eventually coordinate group-wide, he said — the ants acted as a unit although each ant only knew its immediate circumstances.

“They don’t know how many other ants are in the bridge, or what the overall traffic situation is. They only know about their local connections to others, and the sense of ants moving over their bodies,” Couzin said. “Yet, they have evolved simple rules that allow them to keep reconfiguring until, collectively, they have made a structure of an appropriate size for the prevailing conditions.

“Finding out how sightless ants can achieve such feats certainly could change the way we think of self-configuring structures in nature — and those made by man,” he said.

Ant-colony behavior has been the basis of algorithms related to telecommunications and vehicle routing, among other areas, explained co-first author Chris Reid, a postdoctoral research associate at the University of Sydney who conducted the work while at NJIT. Ants exemplify “swarm intelligence,” in which individual-level interactions produce coordinated group behavior. E. hamatum crossings assemble when the ants detect congestion along their raiding trail, and disassemble when normal traffic has resumed.

The video below shows how E. hamatum confronted a gap they encountered on an apparatus that Lutz and Reid built and deployed in the forests of Barro Colorado Island, Panama. Previously, scientists thought that ant bridges were static structures — their appearance over large gaps that ants clearly could not cross in midair was somewhat of a mystery, Reid said. The researchers found, however, that the ants, when confronted with an open space, start from the narrowest point of the expanse and work toward the widest point, expanding the bridge as they go to shorten the distance their compatriots must travel to get around the expanse.

“The amazing thing is that a very elegant solution to a colony-level problem arises from the individual interactions of a swarm of simple worker ants, each with only local information,” Reid said. “By extracting the rules used by individual ants about whether to initiate, join or leave a living structure, we could program swarms of simple robots to build bridges and other structures by connecting to each other.

“These robot bridges would exhibit the beneficial properties we observe in the ant bridges, such as adaptability to local conditions, real-time optimization of shape and position, and rapid construction and deconstruction without the need for external building materials,” Reid continued. “Such a swarm of robots would be especially useful in dangerous and unpredictable conditions, such as natural disaster zones.”

Radhika Nagpal, a professor of computer science at Harvard University who studies robotics and self-organizing biological systems, said that the findings reveal that there is “something much more fundamental about how complex structures are assembled and adapted in nature, and that it is not through a supervisor or planner making decisions.”

Individual ants adjusted to one another’s choices to create a successful structure, despite the fact that each ant didn’t necessarily know everything about the size of the gap or the traffic flow, said Nagpal, who is familiar with the research but was not involved in it.

“The goal wasn’t known ahead of time, but ’emerged’ as the collective continually adapted its solution to the environmental factors,” she said. “The study really opens your eyes to new ways of thinking about collective power, and has tremendous potential as a way to think about engineering systems that are more adaptive and able to solve complex cost-benefit ratios at the network level just through peer-to-peer interactions.”

She compared the ant bridges to human-made bridges that automatically widened to accommodate heavy vehicle traffic or a growing population. While self-assembling road bridges may be a ways off, the example illustrates the potential that technologies built with the same self-assembling capabilities seen in E. hamatum could have.

“There’s a deep interest in creating robots that don’t just rely on themselves, but can exploit the group to do more — and self-assembly is the ultimate in doing more,” Nagpal said. “If you could have small simple robots that were able to navigate complex spaces, but could self-assemble into larger structures — bridges, towers, pulling chains, rafts — when they face something they individually did not have the ability to do, that’s a huge increase in power in what robots would be capable of.”

The spaces E. hamatum bridges are not dramatic by human standards — small rifts in the leaf cover, or between the ends of two sticks. Bridges will be the length of 10 to 20 ants, which is only a few centimeters, Lutz said. That said, E. hamatum swarms form several bridges during the course of a day, which can see the back-and-forth of thousands of ants. Many ants pass over a living bridge even as it is assembling.

Bridging a gap
Image courtesy of Matthew Lutz at Princeton University and Chris Reid at the University of Sydney.

“The bridges are something that happen numerous times every day. They’re creating bridges to optimize their traffic flow and maximize their time,” Lutz said.

“When you’re moving hundreds of thousands of ants, creating a little shortcut can save a lot of energy,” he said. “This is such a unique behavior. You have other types of ants forming structures out of their bodies, but it’s not such a huge part of their lives and daily behavior.”

The research also included Scott Powell, an army-ant expert and assistant professor of biology at George Washington University; Albert Kao, a postdoctoral fellow at Harvard who received his doctorate in ecology and evolutionary biology from Princeton in 2015; and Simon Garnier, an assistant professor of biological sciences at NJIT who studies swarm intelligence and was once a postdoctoral researcher in Couzin’s lab at Princeton.

To conduct their field experiments, Lutz and Reid constructed a 1.5-foot-tall apparatus with ramps on both sides and adjustable arms in the center with which they could adjust the size of the gap. They then inserted the apparatus into active E. hamatum raiding trails that they found in the jungle in Panama. Because ants follow one another’s chemical scent, Lutz and Reid used sticks and leaves from the ants’ trail to get them to reform their column across the device.

Lutz and Reid observed how the ants formed bridges across gaps that were set at angles of 12, 20, 40 and 60 degrees. They gauged how much travel-distance the ants saved with their bridge versus the surface area (in centimeters squared) of the bridge itself. Twelve-degree angles shaved off the most distance (around 11 centimeters) while taking up the fewest workers. Sixty-degree angles had the highest cost-to-benefit ratio. Interestingly, the ants were willing to expend members for 20-degree angles, forming bridges up to 8 centimeters squared to decrease their travel time by almost 12 centimeters, indicating that the loss in manpower was worth the distance saved.

Lutz said that future research based on this work might compare these findings to the living bridges of another army ant species, E. burchellii, to determine if the same principles are in action.

The paper, “Army ants dynamically adjust living bridges in response to a cost-benefit trade-off,” was published Nov. 23 by Proceedings of the National Academy of Sciences. The work was supported by the National Science Foundation (grant nos. PHY-0848755, IOS0-1355061 and EAGER IOS-1251585); the Army Research Office (grant nos. W911NG-11-1-0385 and W911NF-14-1-0431); and the Human Frontier Science Program (grant no. RGP0065/2012).

Read the abstract

Group living: For baboons intermediate size is optimal (PNAS)

New research reveals that intermediate-sized groups of baboons (50 to 70 individuals) exhibit optimal ranging behavior and low stress levels. Pictured is a group of wild baboons in East Africa. Credit: Beth Archie
New research reveals that intermediate-sized groups of baboons (50 to 70 individuals) exhibit optimal ranging behavior and low stress levels. Pictured is a group of wild baboons in East Africa. Credit: Beth Archie

By Gregory Filiano, Stony Brook University

Living with others can offer tremendous benefits for social animals, including primates, but these benefits could come at a high cost. New research from a project that originated at Princeton University reveals that intermediate-sized groups provide the most benefits to wild baboons. The study, led by Catherine Markham at Stony Brook University and published in the journal, Proceedings of the National Academy of Sciences, offers new insight into the costs and benefits of group living.

In the paper titled “Optimal group size in a highly social mammal,” the authors reveal that while wild baboon groups range in size from 20 to 100 members, groups consisting of about 50 to 70 individuals (intermediate size) exhibit optimal ranging behavior and low physiological stress levels in individual baboons, which translates to a social environment that fosters the health and well-being of individual members. The finding provides novel empirical support for an ongoing theory in the fields of evolutionary biology and anthropology that in living intermediate-sized groups has advantages for social mammals.

“Strikingly, we found evidence that intermediate-sized groups have energetically optimal space-use strategies and both large and small groups experience ranging disadvantages,” said Markham, lead author and an assistant professor in the Department of Anthropology at Stony Brook University. “It appears that large, socially dominant groups are constrained by within-group competition whereas small, socially subordinate groups are constrained by between-group competition and/or predation pressures.”

The researchers compiled their findings based on observing five social wild baboon groups in East Africa over 11 years. This population of wild baboons has been studied continuously for over 40 years by the Amboseli Baboon Research Project. They observed and examined the effects of group size and ranging patterns for all of the groups. To gauge stress levels of individuals, they measured the glucocorticoid (stress hormone) levels found in individual waste droppings.

“The combination of an 11-year data set and more intensive short-term data, together with the levels of stress hormones, led to the important finding that there really is a cost to living in too small a group,” said Jeanne Altmann, the Eugene Higgins Professor of Ecology and Evolutionary Biology, Emeritus and a senior scholar at Princeton University. Altmann is a co-director of the Amboseli Baboon Research Project and co-founded the project in 1971 with Stuart Altmann, a senior scholar in the Department of Ecology and Evolutionary Biology at Princeton.

“The cost of living in smaller groups is a concern from a conservation perspective,” Jeanne Altmann said, “Due to the fragmentation of animal habitats, many animals will be living in smaller groups. Understanding these dynamics is one of the next things to study.” The research was supported primarily by the National Science Foundation and the National Institute on Aging.

Markham, who earned her Ph.D. at Princeton University in 2012 with Jeanne Altmann as her thesis adviser, explained that regarding optimal group sizes for highly social species the key to the analysis is how are trade-offs balanced, and do these trade-offs actually result in an optimal group size for a social species.

She said that their findings provide a testable hypothesis for evaluating group-size constraints in other group-living species, in which the costs of intra- and intergroup competition vary as a function of group size. Additionally, their findings provide implications for new research and a broader understanding of both why some animals live with others and how many neighbors will be best for various species and situations.

The research was conducted in collaboration with Susan Alberts, a professor of biology at Duke University and co-director of the Amboseli Baboon Research Project, and with Laurence Gesquiere, a former postdoctoral researcher at Princeton who is now a senior research scientist working with Alberts. Altmann and Alberts are also affiliated with the Institute for Primate Research, National Museums of Kenya.

Additional support was provided by the American Society of Primatologists, the Animal Behavior Society, the International Primatological Society, and Sigma Xi.

Article courtesy of Stony Brook University.

Read the abstract.

A. Catherine Markham, Laurence R. Gesquiere, Susan C. Alberts and Jeanne Altmann. Optimal group size in a highly social mammal. Proceedings of the National Academy of Sciences. Published online before print October 26, 2015, doi: 10.1073/pnas.1517794112 PNAS October 26, 2015