New model projects an increase in dust storms in the US

Drifting dust burying farm abandoned farm equipment.
Drifting dust burying farm abandoned farm equipment in 1935. Image courtesy of NOAA.

By Pooja Makhijani for the Office of Communications

Could the storms that once engulfed the Great Plains in clouds of black dust in the 1930’s once again wreak havoc in the U.S.? A new statistical model developed by researchers at Princeton University and the National Oceanic and Atmospheric Administration (NOAA)’s Geophysical Fluid Dynamics Laboratory (GFDL) predicts that climate change will amplify dust activity in parts of the U.S. in the latter half of the 21st century, which may lead to the increased frequency of spectacular dust storms that have far-reaching impacts on public health and infrastructure.

The model, detailed in a study published July 17 in the journal Scientific Reports, eliminates some of the uncertainty found in previous dust activity models by using present-day satellite data such as dust optical depth, which measures to what extent dust particles block sunlight, as well as leafy green coverage over land and other factors.

“Few existing climate models have captured the magnitude and variability of dust across North America,” said Bing Pu, the study’s lead author and an associate research scholar in the Program in Atmospheric and Oceanic Sciences (AOS), a collaboration between Princeton and GFDL.

Dust storms happen when wind blows soil particles into the atmosphere. Dust storms are most frequent and destructive in arid climates with loose soil — especially on lands affected by drought and deforestation. Certain regions of the U.S., such as the southwestern deserts and the central plains, are dust-prone. Most importantly, existing climate models predict “unprecedented” dry conditions in the late-21st century due to an increase in greenhouse gases in these very areas.

It is this “perfect storm” of geography and predicted drought and drought-like conditions that led Pu and her colleague Paul Ginoux, a physical scientist at GFDL, to examine the influence of climate change on dust. They analyzed satellite data about the frequency of dust events and the land’s leafy green coverage over the contiguous U.S., as well as precipitation and surface wind speed, and reported that climate change will increase dust activity in the southern Great Plains from spring to fall in the late half of the 21st century due to reduced rainfall, increased land surface bareness and increased surface wind speed. Conversely, they predicted reduced dust activity in the northern Great Plains in spring during the same time period due to increased precipitation and increased surface vegetation.

Although it is still unclear if rising temperatures themselves trigger the release of yet more dust into the atmosphere, this research offers a glimpse of what the future might hold. “This is an early attempt to project future changes in dust activity in parts of the United States caused by increasing greenhouse gases,” Pu said. Nonetheless, these findings are important given the huge economic and health consequences of severe dust storms, as they can disrupt public transportation systems and trigger respiratory disease epidemics. “Our specific projections may provide an early warning on erosion control, and help improve risk management and resource planning,” she said.

The paper, “Projection of American dustiness in the late 21st century due to climate change,” was published July 17, 2017 in the journal Scientific Reports (doi 10.1038/s41598-017-05431-9 ) and is available online.

This research was supported by NOAA, Princeton University’s Cooperative Institute for Climate Science, and NASA grantNNH14ZDA001N-ACMAP.

Read more about the research in this GFDL Research Highlight.

Outlook for subtropical rainfall under climate change not so gloomy (Nature Climate Change)

Researchers found a clear difference in the rate of global surface warming (left panel) and the rate of subtropical rainfall decline (indicated by the brown shading in the right panel) when forced with an instantaneous increase of CO2. This is the main evidence to show that the subtropical rainfall decline is unrelated to the global surface warming. Credit: Jie He, Ph.D., Princeton University and Brian J. Soden, Ph.D., University of Miami Rosenstiel School of Marine and Atmospheric Science
Researchers found a clear difference in the rate of global surface warming (left panel) and the rate of subtropical rainfall decline (indicated by the brown shading in the right panel) when forced with an instantaneous increase of CO2. (Credit: Jie He, Ph.D., Princeton University and Brian J. Soden, Ph.D., University of Miami Rosenstiel School of Marine and Atmospheric Science)

By Diana Udel, University of Miami

Terrestrial rainfall in the subtropics — including the southeastern United States — may not decline in response to increased greenhouse gases as much as it could over oceans, according to a study from Princeton University and the University of Miami (UM). The study challenges previous projections of how dry subtropical regions could become in the future, and it suggests that the impact of decreased rainfall on people living in these regions could be less severe than initially thought.

“The lack of rainfall decline over subtropical land is caused by the fact that land will warm much faster than the ocean in the future — a mechanism that has been overlooked in previous studies about subtropical precipitation change,” said first author Jie He, a postdoctoral research associate in Princeton’s Program in Atmospheric and Oceanic Sciences who works at the National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory located on Princeton’s Forrestal Campus.

In the new study, published in the journal Nature Climate Change, He and co-author Brian Soden, a UM professor of atmospheric sciences, used an ensemble of climate models to show that rainfall decreases occur faster than global warming, and therefore another mechanism must be at play. They found that direct heating from increasing greenhouse gases is causing the land to warm faster than the ocean. The associated changes in atmospheric circulation are thus driving rainfall decline over the oceans rather than land.

Subtropical rainfall changes have been previously attributed to two mechanisms related to global warming: greater moisture content in air that is transported away from the subtropics, and a pole-ward shift in air circulation. While both mechanisms are present, this study shows that neither one is responsible for a decline in rainfall.

“It has been long accepted that climate models project a large-scale rainfall decline in the future over the subtropics. Since most of the subtropical regions are already suffering from rainfall scarcity, the possibility of future rainfall decline is of great concern,” Soden said. “However, most of this decline occurs over subtropical oceans, not land, due to changes in the atmospheric circulation induced by the more rapid warming of land than ocean.”

Most of the reduction in subtropical rainfall occurs instantaneously with an increase of greenhouse gases, independent of the warming of the Earth’s surface, which occurs much more slowly. According to the authors, this indicates that emission reductions would immediately mitigate subtropical rainfall decline, even though the surface will continue to warm for a long time.

He is supported by the Visiting Scientist Program at the department of Atmospheric and Oceanic Science, Princeton University.

Read the abstract:

The study, “A re-examination of the projected subtropical precipitation decline,” was published in the Nov. 14 issue of the journal Nature Climate Change.