# Category Archives: Event

# Undergraduate Colloquium, Monday, April 28

The next colloquium will be this coming Monday, 4/28, given by Prof. Yakov Sinai. It will be at 5pm in Fine 322. He will be talking about deterministic chaos and here is the abstract:

Deterministic chaos is a property of deterministic dynamics. I shall explain main properties of chaotic dynamics and give some example of chaotic dynamical systems.

Prof. Sinai is known for his work in dynamic systems. As many of you may have heard, he received the Abel Prize, which is often described as the mathematician’s Nobel Prize, not long ago. Check out his wikipedia page if you are interested!http://en.wikipedia.org/wiki/Yakov_Sinai

# Undergraduate Colloquium, Wednesday April 9th

When: 5:00 pm – 6:00 pm, April 9th (coming Wednesday)

Where: Fine 214

Who: Prof. Adam Levine, who specializes in low-dimensional topology (and he only joined Princeton this academic year!) You can check out some details here:https://www.math.princeton.edu/news/home-page/mathematics-department-welcomes-new-faculty

What:

Title: Knot Concordance

Abstract: Concordance is the study of which knots in three-dimensional space can be realized as the boundaries of embedded disks in four dimensions, a question that was first introduced by Princeton’s Ralph Fox and John Milnor in the 1950s. This question is closely tied to many of the strange features of four-dimensional topology and is the subject of much current research. I’ll provide an overview of this subject and an introduction to some of the modern tools that have led to breakthroughs in our understanding.

# Undergraduate Colloquium, Wednesday April 2nd

**5:45 pm – 6:45 pm, April 2nd (coming Wednesday)**

**Fine 314**

**Who:**

**Prof. Ken Ono, a professor from Emory University who specializes in number theory. You can check him out here:**

**http://en.wikipedia.org/wiki/Ken_Ono**

Abstract. I will explain some cool theorems in number theory that undergraduates

have proven in the last few years. This will include work on the distribution of

primes, number fields, and extensions if works by Euler-Jacobi-Nekrasov-Okounkov-Serre. Let me explain.

# Come Dine with Professor Dunham

# Come Meet Professor Dunham, visiting professor and author of *Journey Through Genius*, this Thursday at 6 in the Butler Private Dining Room!

Sign up for “Meet Your Professor Dinner” here: https://wass.princeton.edu/pages/viewcalendar.page.php?makeapp=1&cal_id=1720

**William Dunham** is visiting Princeton this semester and teaching a Freshman Seminar titled “The Great Theorems of Mathematics.” He is a historian of mathematics who has spoken at scores of institutions — e.g., Harvard, Penn, Swarthmore — and written multiple books on the subject — e.g., *Journey Through Genius*(1990), *Euler: The Master of Us All *(1999), and *The Calculus Gallery* (2005). Except for the weather, he’s very much enjoying his term at Princeton, where he’s addressed the Mathematics Colloquium and given the 2014 Pi Day talk to the Math Club. And he’s thrilled to be part of this “Meet Your Professor” dinner.

# Undergraduate Colloquium, Wednesday, 3/26

**5:30 pm – 6:30 pm, March 26th**

**Fine 214**

**Who:**

**Prof. Klainerman, who specializes in PDE and analysis**

# Undergraduate Colloquium, Monday Mar 3rd

**4.30 pm – 5.30 pm, March 3 (coming Monday)**

**Fine 322**

**Who:**

**Prof. Robert Gunning, who has been teaching advanced 215/217 sequence for the past two years. His research focuses on analysis**

**here are the title and abstracts**

The graph of a curve is a familiar construction in the real plane; the analogous construction for complex valued functions of a complex variable is a “curve” that is a 2-dimensional set in a 4-dimensional space. Such curves, aside from a few singularities, locally look just like pieces of the complex plane, so it is possible to carry out complex analysis on such “curves”, just as for the complex plane; but the global geometry introduces a rich and fascinating structure on these sets, called Riemann surfaces (following the work of B. Riemann).

# Spring Mentoring Möbius Meeting – Food, Fun, and Updates!

**at**

*next Thursday, February 27th***in the**

*8:00pm***. If you haven’t met with your group yet, please do so before this meeting. At the reorientation, we’ll announce a change regarding Mentoring Möbius.**

*Fine common room**money*, so you know it’s important. You better come to the meeting then. If you can’t make it, please shoot me an email!

# Math Colloquium, Friday Feb. 21

**4 pm – 5 pm, February 21 (coming Friday)**

**Fine 224**

**Who:**

**I don’t think I need to say more about Prof. Conway, but if you are interested in more details, please check wikipedia page here:**

**here are the title and abstracts**

In 1899 Frank Morley noticed that the points of intersection of the adjacent angle trisectors form an equilateral triangle. Since then, proofs of various levels of complexity have been given, and in this colloquium Professor Conway will present a surprisingly simple proof discovered by himself. In addition, Professor Conway will introduce a new theorem of himself on equilateral triangles and the subtle mathematics behind it.